12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effect of erythropoietin-stimulating agent on uremic inflammation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The goal of the present study was to explore the effect of medications that are commonly prescribed for CKD patients on uremic state.

          Methods

          This was a cross-sectional study. From January 2006 to October 2009, 1,623 patients with end-stage kidney disease (ESKD) commenced hemodialysis (HD) at the 9 participating hospitals. The criteria for exclusion from the database were 1) serum C-reactive protein (CRP) > 3 mg/dL, 2) WBC count > 9,000/mm 3 or <4,000/mm 3, and 3) patients with cancer, immune complex disease, or vasculitis. A total of 900 patients were entered into the final database. We explored the association of serum CRP just before the first HD session with clinical characteristics, laboratory data, and medications for CKD in the predialysis period.

          Results

          On univariate analysis, age, CTR, eGFR, and WBC were significantly correlated with CRP. Systolic and diastolic blood pressure, serum albumin, LDL-C, HDL-C, Hb, Cr, and Ca were inversely associated with CRP. Use of erythropoietin-stimulating agents (ESA) using (r = −0.111, p = 0.0015), renin-angiotensin-aldosterone system inhibitors (r = −0.083, p = 0.0154), and calcium channel blockers (r = −0.1, p = 0.0039) was also negatively correlated with CRP. However, only use of ESA showed a significant negative correlation with CRP that was independent of other clinical factors and CKD medications on multiple regression analysis.

          Conclusion

          ESA may strongly reduce uremic inflammation in addition to improving anemia. To confirm this potential effect, a large-scale longitudinal study would be required.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Rosuvastatin and cardiovascular events in patients undergoing hemodialysis.

          Statins reduce the incidence of cardiovascular events in patients at high cardiovascular risk. However, a benefit of statins in such patients who are undergoing hemodialysis has not been proved. We conducted an international, multicenter, randomized, double-blind, prospective trial involving 2776 patients, 50 to 80 years of age, who were undergoing maintenance hemodialysis. We randomly assigned patients to receive rosuvastatin, 10 mg daily, or placebo. The combined primary end point was death from cardiovascular causes, nonfatal myocardial infarction, or nonfatal stroke. Secondary end points included death from all causes and individual cardiac and vascular events. After 3 months, the mean reduction in low-density lipoprotein (LDL) cholesterol levels was 43% in patients receiving rosuvastatin, from a mean baseline level of 100 mg per deciliter (2.6 mmol per liter). During a median follow-up period of 3.8 years, 396 patients in the rosuvastatin group and 408 patients in the placebo group reached the primary end point (9.2 and 9.5 events per 100 patient-years, respectively; hazard ratio for the combined end point in the rosuvastatin group vs. the placebo group, 0.96; 95% confidence interval [CI], 0.84 to 1.11; P=0.59). Rosuvastatin had no effect on individual components of the primary end point. There was also no significant effect on all-cause mortality (13.5 vs. 14.0 events per 100 patient-years; hazard ratio, 0.96; 95% CI, 0.86 to 1.07; P=0.51). In patients undergoing hemodialysis, the initiation of treatment with rosuvastatin lowered the LDL cholesterol level but had no significant effect on the composite primary end point of death from cardiovascular causes, nonfatal myocardial infarction, or nonfatal stroke. (ClinicalTrials.gov number, NCT00240331.) 2009 Massachusetts Medical Society
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Strong association between malnutrition, inflammation, and atherosclerosis in chronic renal failure.

            Atherosclerotic cardiovascular disease and malnutrition are widely recognized as leading causes of the increased morbidity and mortality observed in uremic patients. C-reactive protein (CRP), an acute-phase protein, is a predictor of cardiovascular mortality in nonrenal patient populations. In chronic renal failure (CRF), the prevalence of an acute-phase response has been associated with an increased mortality. One hundred and nine predialysis patients (age 52 +/- 1 years) with terminal CRF (glomerular filtration rate 7 +/- 1 ml/min) were studied. By using noninvasive B-mode ultrasonography, the cross-sectional carotid intima-media area was calculated, and the presence or absence of carotid plaques was determined. Nutritional status was assessed by subjective global assessment (SGA), dual-energy x-ray absorptiometry (DXA), serum albumin, serum creatinine, serum urea, and 24-hour urine urea excretion. The presence of an inflammatory reaction was assessed by CRP, fibrinogen (N = 46), and tumor necrosis factor-alpha (TNF-alpha; N = 87). Lipid parameters, including Lp(a) and apo(a)-isoforms, as well as markers of oxidative stress (autoantibodies against oxidized low-density lipoprotein and vitamin E), were also determined. Compared with healthy controls, CRF patients had an increased mean carotid intima-media area (18.3 +/- 0.6 vs. 13.2 +/- 0.7 mm2, P or = 10 mg/liter). Malnourished patients had higher CRP levels (23 +/- 3 vs. 13 +/- 2 mg/liter, P < 0.01), elevated calculated intima-media area (20.2 +/- 0.8 vs. 16.9 +/- 0.7 mm2, P < 0.01) and a higher prevalence of carotid plaques (90 vs. 60%, P < 0.0001) compared with well-nourished patients. During stepwise multivariate analysis adjusting for age and gender, vitamin E (P < 0.05) and CRP (P < 0.05) remained associated with an increased intima-media area. The presence of carotid plaques was significantly associated with age (P < 0.001), log oxidized low-density lipoprotein (oxLDL; P < 0.01), and small apo(a) isoform size (P < 0.05) in a multivariate logistic regression model. These results indicate that the rapidly developing atherosclerosis in advanced CRF appears to be caused by a synergism of different mechanisms, such as malnutrition, inflammation, oxidative stress, and genetic components. Apart from classic risk factors, low vitamin E levels and elevated CRP levels are associated with an increased intima-media area, whereas small molecular weight apo(a) isoforms and increased levels of oxLDL are associated with the presence of carotid plaques.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Cardio-renal syndromes: report from the consensus conference of the Acute Dialysis Quality Initiative

              A consensus conference on cardio-renal syndromes (CRS) was held in Venice Italy, in September 2008 under the auspices of the Acute Dialysis Quality Initiative (ADQI). The following topics were matter of discussion after a systematic literature review and the appraisal of the best available evidence: definition/classification system; epidemiology; diagnostic criteria and biomarkers; prevention/protection strategies; management and therapy. The umbrella term CRS was used to identify a disorder of the heart and kidneys whereby acute or chronic dysfunction in one organ may induce acute or chronic dysfunction in the other organ. Different syndromes were identified and classified into five subtypes. Acute CRS (type 1): acute worsening of heart function (AHF–ACS) leading to kidney injury and/or dysfunction. Chronic cardio-renal syndrome (type 2): chronic abnormalities in heart function (CHF-CHD) leading to kidney injury and/or dysfunction. Acute reno-cardiac syndrome (type 3): acute worsening of kidney function (AKI) leading to heart injury and/or dysfunction. Chronic reno-cardiac syndrome (type 4): chronic kidney disease leading to heart injury, disease, and/or dysfunction. Secondary CRS (type 5): systemic conditions leading to simultaneous injury and/or dysfunction of heart and kidney. Consensus statements concerning epidemiology, diagnosis, prevention, and management strategies are discussed in the paper for each of the syndromes.
                Bookmark

                Author and article information

                Journal
                J Inflamm (Lond)
                J Inflamm (Lond)
                Journal of Inflammation (London, England)
                BioMed Central
                1476-9255
                2012
                14 May 2012
                : 9
                : 17
                Affiliations
                [1 ]Division of Nephrology, Toho University Ohashi Medical Center, 2-17-6, Ohashi, Tokyo, Meguro-ku, 153-8515, Japan
                [2 ]Department of Medicine, Division of Nephrology & Hypertension, Nephrology and Dialysis Unit, Aoto General Hospital, Jikei University School of Medicine, Tokyo, Japan
                [3 ]Department of Nephrology, Musashino Red Cross Hospital, Tokyo, Japan
                [4 ]Dialysis Center, Kawakita General Hospital, Tokyo, Japan
                [5 ]Kidney Center, Nagoya Daini Red Cross Hospital, Nagoya, Japan
                [6 ]Division of Nephrology and Blood Purification Medicine, Wakayama Medical University, Wakayama, Japan
                [7 ]Department of Nephrology, Division of Internal Medicine, St. Luke’s International Hospital, Tokyo, Japan
                [8 ]Division of Nephrology, Department of Internal Medicine, Showa University Fujigaoka Hospital, Yokohama, Japan
                [9 ]Department of Clinical Engineering, Social insurance chuo general hospital, Tokyo, Japan
                Article
                1476-9255-9-17
                10.1186/1476-9255-9-17
                3787853
                22583484
                55d896f1-7b35-4180-8bb9-50047f3d6bf1
                Copyright ©2012 Tanaka et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 14 December 2011
                : 14 May 2012
                Categories
                Research

                Immunology
                crp,erythropoietin stimulating agent,ace-i/arb,initiation of dialysis,inflammation
                Immunology
                crp, erythropoietin stimulating agent, ace-i/arb, initiation of dialysis, inflammation

                Comments

                Comment on this article