0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Involvement of Vasoactive Intestinal Peptide on Insulin-Like Growth Factor I-Induced Proliferation of Rat Pituitary Lactotropes in Primary Culture: Evidence for an Autocrine and/or Paracrine Regulatory System

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In previous studies we demonstrated that insulin-like growth factor I (IGF-I) induces pituitary vasoactive intestinal peptide (VIP) gene expression and secretion, and that IGF-I-induced prolactin (PRL) release is mediated by VIP. In this study, we investigate the mitotropic action of IGF-I and VIP on pituitary lactotropes, and their possible interplay in this effect. Cultured male rat pituitary cells were treated with rhIGF-I (10<sup>–7</sup> M) and/or VIP (10<sup>–7</sup> M) for 48 h. 5-Bromo-2′-deoxyuridine (BrdU) (10 µ M) was added for labeling proliferation of pituitary cells. BrdU-labeling indices indicative of the proliferation rate of lactotropes were determined by double-labeling immunofluorescence staining for PRL and BrdU. Treatment with either IGF-I or VIP increased BrdU-labeling indices of lactotropes, but there was no further increase upon combined incubation with both factors, suggesting an interaction between the signal transduction pathways of IGF-I and VIP. VIP antiserum partially suppressed IGF-I-induced BrdU-labeling indices of lactotropes. We also investigated the intracellular signal transduction pathways in the action of IGF-I and VIP on the proliferation of lactotropes. Treatment of pituitary cells with an inhibitor of the mitogen-activated protein kinase (MAPK) pathway completely abolished IGF-I-induced lactotrope proliferation, whereas it partially suppressed VIP-induced BrdU-labeling indices. The protein kinase A (PKA) inhibitor, which abolished the mitogenic action of VIP, markedly suppressed IGF-I-induced lactotrope proliferation. These results indicate that both IGF-I and VIP stimulate lactotrope proliferation, and that IGF-I-induced lactotrope proliferation is partially mediated by VIP produced locally. Also, this study suggests that interactions between MAPK and cyclic adenosine 3′,5′-monophosphate-PKA signaling pathways are implicated in the lactotrope proliferation induced by IGF-I and VIP.

          Related collections

          Most cited references 16

          • Record: found
          • Abstract: found
          • Article: not found

          Thermally Switchable Periodicities and Diffraction from Mesoscopically Ordered Materials

          Two switchable, mesoscopically periodic materials were created by combining crystalline colloidal array (CCA) self-assembly with the temperature-induced volume phase transition of poly(N-isopropylacrylamide) (PNIPAM). Body-centered-cubic CCAs of hydrated, swollen PNIPAM particles Bragg-diffract infrared, visible, and ultraviolet light weakly, whereas arrays of compact shrunken particles diffract efficiently. A tunable diffracting array was also created by embedding a CCA of polystyrene spheres within a PNIPAM hydrogel that swells and contracts with temperature; thus the array lattice constant varies with temperature, and the diffracted wavelength was thermally tunable across the entire visible spectrum. These materials may find applications in many areas of optics and materials science.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transcriptional regulation by cyclic AMP.

             Marc Montminy (1996)
            A number of hormones and growth factors have been shown to stimulate target cells via second messenger pathways that in turn regulate the phosphorylation of specific nuclear factors. The second messenger cyclic AMP, for example, regulates a striking number of physiologic processes, including intermediary metabolism, cellular proliferation, and neuronal signaling, by altering basic patterns of gene expression. Our understanding of cyclic AMP signaling in the nucleus has expanded considerably over the past decade, owing in large part to the characterization of cyclic AMP-responsive promoter elements, transcription factors that bind them, and signal-dependent coactivators that mediate target gene induction. More importantly, these studies have revealed new insights into biological problems as diverse as biological clocks and long-term memory. The purpose of this review is to describe the components of the cyclic AMP response unit and to analyze how these components cooperate to induce target gene expression in response to hormonal stimulation.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              PD 098059 Is a Specific Inhibitor of the Activation of Mitogen-activated Protein Kinase Kinasein Vitroandin Vivo

                Bookmark

                Author and article information

                Journal
                NEN
                Neuroendocrinology
                10.1159/issn.0028-3835
                Neuroendocrinology
                S. Karger AG
                0028-3835
                1423-0194
                2003
                June 2003
                13 June 2003
                : 77
                : 5
                : 341-352
                Affiliations
                aServicio de Endocrinología, Hospital Ramón y Cajal, Carretera de Colmenar, Madrid y bServicio de Endocrinología, Hospital Carlos III-CIC, Instituto de Salud Carlos III, Madrid, Spain
                Article
                70900 Neuroendocrinology 2003;77:341–352
                10.1159/000070900
                12806180
                © 2003 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 5, References: 64, Pages: 12
                Categories
                Differentiation of Pituitary Cells

                Comments

                Comment on this article