10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Inhibition by pentoxifylline of TNF-alpha-stimulated fractalkine production in vascular smooth muscle cells: evidence for mediation by NF-kappa B down-regulation.

      British Journal of Pharmacology
      Animals, Cells, Cultured, Chemokine CX3CL1, Chemokines, CX3C, antagonists & inhibitors, biosynthesis, genetics, Dose-Response Relationship, Drug, Down-Regulation, drug effects, physiology, Gene Expression Regulation, Membrane Proteins, Muscle, Smooth, Vascular, metabolism, NF-kappa B, Pentoxifylline, pharmacology, RNA, Messenger, Rats, Tumor Necrosis Factor-alpha

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          (1) Fractalkine is a CX(3)C chemokine for mononuclear leukocytes that is expressed mainly by vascular cells, and regulated by pro-inflammatory cytokines. This study investigated signal transduction mechanisms by which tumor necrosis factor (TNF)-alpha stimulated fractalkine expression in cultured rat vascular smooth muscle cells (VSMCs), and the modulatory effect of a haemorrheologic agent, pentoxifylline, on its production. (2) TNF-alpha (1-50 ng ml(-1)) stimulated fractalkine mRNA and protein expression in concentration- and time-dependent manners. Pretreatment with calphostin C (0.4 micro M, a selective inhibitor of protein kinase C (PKC), and PD98059 (40 micro M), a specific inhibitor of p42/44 mitogen-activated protein kinase (MAPK) kinase, attenuated TNF-alpha-stimulated fractalkine mRNA and protein expression. In contrast, H-89 (2 micro M), a selective inhibitor of cAMP-dependent protein kinase, wortmannin (0.5 micro M), a selective inhibitor of phosphatidylinositol 3-kinase, and SB203580 (40 micro M), a specific inhibitor of p38 MAPK, had no discernible effect. (3) The ubiquitin/proteosome inhibitors, MG132 (10 micro M) and pyrrolidine dithiocarbamate (200 micro M), suppressed activation of NF-kappaB as well as stimulation of fractalkine mRNA and protein expression by TNF-alpha. (4) TNF-alpha-activated phosphorylation of PKC was blocked by calphostin C, whereas TNF-alpha-augmented phospho-p42/44 MAPK and phospho-c-Jun levels were reduced by PD98059. Neither calphostin C nor PD98059 affected TNF-alpha-induced degradation of I-kappaBalpha or p65 nuclear translocation. (5) Pretreatment with pentoxifylline (0.1-1 mg ml(-1)) decreased TNF-alpha-stimulated fractalkine mRNA and protein expression, which was preceded by a reduction in TNF-alpha-activated phosphorylation of PKC, p42/44 MAPK and c-Jun as well as degradation of I-kappaBalpha and p65/NF-kappaB nuclear translocation. (6) These data indicate that activation of PKC, p42/44 MAPK kinase, and NF-kappaB are involved in TNF-alpha-stimulated fractalkine production in VSMCs. Down-regulation of the PKC, p42/44 MAPK, and p65/NF-kappaB signals by PTX may be therapeutically relevant and provide an explanation for the anti-fractalkine effect of this drug.

          Related collections

          Author and article information

          Comments

          Comment on this article