16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Targeting fibroblast activation protein inhibits tumor stromagenesis and growth in mice.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Membrane-bound proteases have recently emerged as critical mediators of tumorigenesis, angiogenesis, and metastasis. However, the mechanisms by which they regulate these processes remain unknown. As the cell surface serine protease fibroblast activation protein (FAP) is selectively expressed on tumor-associated fibroblasts and pericytes in epithelial tumors, we set out to investigate the role of FAP in mouse models of epithelial-derived solid tumors. In this study, we demonstrate that genetic deletion and pharmacologic inhibition of FAP inhibited tumor growth in both an endogenous mouse model of lung cancer driven by the K-rasG12D mutant and a mouse model of colon cancer, in which CT26 mouse colon cancer cells were transplanted into immune competent syngeneic mice. Interestingly, growth of only the K-rasG12D-driven lung tumors was also attenuated by inhibition of the closely related protease dipeptidyl peptidase IV (DPPIV). Our results indicate that FAP depletion inhibits tumor cell proliferation indirectly, increases accumulation of collagen, decreases myofibroblast content, and decreases blood vessel density in tumors. These data provide proof of principle that targeting stromal cell-mediated modifications of the tumor microenvironment may be an effective approach to treating epithelial-derived solid tumors.

          Related collections

          Author and article information

          Journal
          J Clin Invest
          The Journal of clinical investigation
          American Society for Clinical Investigation
          1558-8238
          0021-9738
          Dec 2009
          : 119
          : 12
          Affiliations
          [1 ] The Wistar Institute, Philadelphia, Pennsylvania, USA. asantos@wistar.org
          Article
          38988
          10.1172/JCI38988
          2786791
          19920354
          55f23dd8-0a69-4bb7-91cb-193f5958c02b
          History

          Comments

          Comment on this article