28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Yeast Screens Identify the RNA Polymerase II CTD and SPT5 as Relevant Targets of BRCA1 Interaction

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          BRCA1 has been implicated in numerous DNA repair pathways that maintain genome integrity, however the function responsible for its tumor suppressor activity in breast cancer remains obscure. To identify the most highly conserved of the many BRCA1 functions, we screened the evolutionarily distant eukaryote Saccharomyces cerevisiae for mutants that suppressed the G1 checkpoint arrest and lethality induced following heterologous BRCA1 expression. A genome-wide screen in the diploid deletion collection combined with a screen of ionizing radiation sensitive gene deletions identified mutants that permit growth in the presence of BRCA1. These genes delineate a metabolic mRNA pathway that temporally links transcription elongation ( SPT4, SPT5, CTK1, DEF1) to nucleopore-mediated mRNA export ( ASM4, MLP1, MLP2, NUP2, NUP53, NUP120, NUP133, NUP170, NUP188, POM34) and cytoplasmic mRNA decay at P-bodies ( CCR4, DHH1). Strikingly, BRCA1 interacted with the phosphorylated RNA polymerase II (RNAPII) carboxy terminal domain (P-CTD), phosphorylated in the pattern specified by the CTDK-I kinase, to induce DEF1-dependent cleavage and accumulation of a RNAPII fragment containing the P-CTD. Significantly, breast cancer associated BRCT domain defects in BRCA1 that suppressed P-CTD cleavage and lethality in yeast also suppressed the physical interaction of BRCA1 with human SPT5 in breast epithelial cells, thus confirming SPT5 as a relevant target of BRCA1 interaction. Furthermore, enhanced P-CTD cleavage was observed in both yeast and human breast cells following UV-irradiation indicating a conserved eukaryotic damage response. Moreover, P-CTD cleavage in breast epithelial cells was BRCA1-dependent since damage-induced P-CTD cleavage was only observed in the mutant BRCA1 cell line HCC1937 following ectopic expression of wild type BRCA1. Finally, BRCA1, SPT5 and hyperphosphorylated RPB1 form a complex that was rapidly degraded following MMS treatment in wild type but not BRCA1 mutant breast cells. These results extend the mechanistic links between BRCA1 and transcriptional consequences in response to DNA damage and suggest an important role for RNAPII P-CTD cleavage in BRCA1-mediated cancer suppression.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Phosphorylation and functions of the RNA polymerase II CTD.

          The C-terminal repeat domain (CTD), an unusual extension appended to the C terminus of the largest subunit of RNA polymerase II, serves as a flexible binding scaffold for numerous nuclear factors; which factors bind is determined by the phosphorylation patterns on the CTD repeats. Changes in phosphorylation patterns, as polymerase transcribes a gene, are thought to orchestrate the association of different sets of factors with the transcriptase and strongly influence functional organization of the nucleus. In this review we appraise what is known, and what is not known, about patterns of phosphorylation on the CTD of RNA polymerases II at the beginning, the middle, and the end of genes; the proposal that doubly phosphorylated repeats are present on elongating polymerase is explored. We discuss briefly proteins known to associate with the phosphorylated CTD at the beginning and ends of genes; we explore in more detail proteins that are recruited to the body of genes, the diversity of their functions, and the potential consequences of tethering these functions to elongating RNA polymerase II. We also discuss accumulating structural information on phosphoCTD-binding proteins and how it illustrates the variety of binding domains and interaction modes, emphasizing the structural flexibility of the CTD. We end with a number of open questions that highlight the extent of what remains to be learned about the phosphorylation and functions of the CTD.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures.

            We report the identities of the members of a group of proteins that associate with BRCA1 to form a large complex that we have named BASC (BRCA1-associated genome surveillance complex). This complex includes tumor suppressors and DNA damage repair proteins MSH2, MSH6, MLH1, ATM, BLM, and the RAD50-MRE11-NBS1 protein complex. In addition, DNA replication factor C (RFC), a protein complex that facilitates the loading of PCNA onto DNA, is also part of BASC. We find that BRCA1, the BLM helicase, and the RAD50-MRE11-NBS1 complex colocalize to large nuclear foci that contain PCNA when cells are treated with agents that interfere with DNA synthesis. The association of BRCA1 with MSH2 and MSH6, which are required for transcription-coupled repair, provides a possible explanation for the role of BRCA1 in this pathway. Strikingly, all members of this complex have roles in recognition of abnormal DNA structures or damaged DNA, suggesting that BASC may serve as a sensor for DNA damage. Several of these proteins also have roles in DNA replication-associated repair. Collectively, these results suggest that BRCA1 may function as a coordinator of multiple activities required for maintenance of genomic integrity during the process of DNA replication and point to a central role for BRCA1 in DNA repair.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cytoplasmic foci are sites of mRNA decay in human cells

              Understanding gene expression control requires defining the molecular and cellular basis of mRNA turnover. We have previously shown that the human decapping factors hDcp2 and hDcp1a are concentrated in specific cytoplasmic structures. Here, we show that hCcr4, hDcp1b, hLsm, and rck/p54 proteins related to 5′–3′ mRNA decay also localize to these structures, whereas DcpS, which is involved in cap nucleotide catabolism, is nuclear. Functional analysis using fluorescence resonance energy transfer revealed that hDcp1a and hDcp2 interact in vivo in these structures that were shown to differ from the previously described stress granules. Our data indicate that these new structures are dynamic, as they disappear when mRNA breakdown is abolished by treatment with inhibitors. Accumulation of poly(A)+ RNA in these structures, after RNAi-mediated inactivation of the Xrn1 exonuclease, demonstrates that they represent active mRNA decay sites. The occurrence of 5′–3′ mRNA decay in specific subcellular locations in human cells suggests that the cytoplasm of eukaryotic cells may be more organized than previously anticipated.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2008
                16 January 2008
                : 3
                : 1
                : e1448
                Affiliations
                [1 ]Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
                [2 ]Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
                [3 ]Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, United States of America
                [4 ]Gene and Molecular Therapy Laboratory, Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche (CNR), CNR Research Area Via Moruzzi, Pisa, Italy
                Northwestern University, United States of America
                Author notes
                * To whom correspondence should be addressed. E-mail: benne048@ 123456mc.duke.edu

                Conceived and designed the experiments: AG JM CB. Performed the experiments: CB TW CV TS HP GH AS EM DB AF YM. Analyzed the data: JM CB. Contributed reagents/materials/analysis tools: AG CB HP AG JO. Wrote the paper: AG JM CB.

                Article
                07-PONE-RA-01638R1
                10.1371/journal.pone.0001448
                2174531
                18197258
                55f304fe-0a7a-429a-93f6-cffa7f081091
                Bennett et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 2 July 2007
                : 13 December 2007
                Page count
                Pages: 15
                Categories
                Research Article
                Biochemistry/Replication and Repair
                Biochemistry/Transcription and Translation
                Genetics and Genomics/Functional Genomics
                Oncology/Breast Cancer

                Uncategorized
                Uncategorized

                Comments

                Comment on this article