46
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Redox Changes Induced by General Anesthesia in Critically Ill Patients with Multiple Traumas

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The critically ill polytrauma patient is a constant challenge for the trauma team due to the complexity of the complications presented. Intense inflammatory response and infections, as well as multiple organ dysfunctions, significantly increase the rate of morbidity and mortality in these patients. Moreover, due to the physiological and biochemical imbalances present in this type of patients, the bioproduction of free radicals is significantly accelerated, thus installing the oxidative stress. In the therapeutic management of such patients, multiple surgical interventions are required and therefore they are being subjected to repeated general anesthesia. In this paper, we want to present the pathophysiological implications of oxidative stress in critically ill patients with multiple traumas and the implications of general anesthesia on the redox mechanisms of the cell. We also want to summarize the antioxidant treatments able to reduce the intensity of oxidative stress by modulating the biochemical activity of some cellular mechanisms.

          Related collections

          Most cited references87

          • Record: found
          • Abstract: found
          • Article: not found

          Oxidative stress and redox regulation of lung inflammation in COPD.

          Reactive oxygen species, either directly or via the formation of lipid peroxidation products, may play a role in enhancing inflammation through the activation of stress kinases (c-Jun activated kinase, extracellular signal-regulated kinase, p38) and redox-sensitive transcription factors, such as nuclear factor (NF)-kappaB and activator protein-1. This results in increased expression of a battery of distinct pro-inflammatory mediators. Oxidative stress activates NF-kappaB-mediated transcription of pro-inflammatory mediators either through activation of its activating inhibitor of kappaB-alpha kinase or the enhanced recruitment and activation of transcriptional co-activators. Enhanced NF-kappaB-co-activator complex formation results in targeted increases in histone modifications, such as acetylation leading to inflammatory gene expression. Emerging evidence suggests the glutathione redox couple may entail dynamic regulation of protein function by reversible disulphide bond formation on kinases, phosphatases and transcription factors. Oxidative stress also inhibits histone deacetylase activity and in doing so further enhances inflammatory gene expression and may attenuate glucocorticoid sensitivity. The antioxidant/anti-inflammatory effects of thiol molecules (glutathione, N-acetyl-L-cysteine and N-acystelyn, erdosteine), dietary polyphenols (curcumin-diferuloylmethane, cathechins/quercetin and reserveratol), specific spin traps, such as alpha-phenyl-N-tert-butyl nitrone, a catalytic antioxidant (extracellular superoxide dismutase (SOD) mimetic, SOD mimetic M40419 and SOD, and catalase manganic salen compound, eukarion-8), porphyrins (AEOL 10150 and AEOL 10113) and theophylline have all been shown to play a role in either controlling NF-kappaB activation or affecting histone modifications with subsequent effects on inflammatory gene expression in lung epithelial cells. Thus, oxidative stress regulates both key signal transduction pathways and histone modifications involved in lung inflammation. Various approaches to enhance lung antioxidant capacity and clinical trials of antioxidant compounds in chronic obstructive pulmonary disease are also discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The microcirculation is the motor of sepsis

            Can Ince (2005)
            Regional tissue distress caused by microcirculatory dysfunction and mitochondrial depression underlies the condition in sepsis and shock where, despite correction of systemic oxygen delivery variables, regional hypoxia and oxygen extraction deficit persist. We have termed this condition microcirculatory and mitochondrial distress syndrome (MMDS). Orthogonal polarization spectral imaging allowed the first clinical observation of the microcirculation in human internal organs, and has identified the pivotal role of microcirculatory abnormalities in defining the severity of sepsis, a condition not revealed by systemic hemodynamic or oxygen-derived variables. Recently, sublingual sidestream dark-field (SDF) imaging has been introduced, allowing observation of the microcirculation in even greater detail. Microcirculatory recruitment is needed to ensure adequate microcirculatory perfusion and the oxygenation of tissue cells that follows. In sepsis, where inflammation-induced autoregulatory dysfunction persists and oxygen need is not matched by supply, the microcirculation can be recruited by reducing pathological shunting, promoting microcirculatory perfusion, supporting pump function, and controlling hemorheology and coagulation. Resuscitation following MMDS must include focused recruitment of hypoxic-shunted microcirculatory units and/or resuscitation of the mitochondria. A combination of agents is required for successful rescue of the microcirculation. Single compounds such as activated protein C, which acts on multiple pathways, can be expected to be beneficial in rescuing the microcirculation in sepsis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Superoxide dismutases: ancient enzymes and new insights.

              Superoxide dismutases (SODs) catalyze the de toxification of superoxide. SODs therefore acquired great importance as O(2) became prevalent following the evolution of oxygenic photosynthesis. Thus the three forms of SOD provide intriguing insights into the evolution of the organisms and organelles that carry them today. Although ancient organisms employed Fe-dependent SODs, oxidation of the environment made Fe less bio-available, and more dangerous. Indeed, modern lineages make greater use of homologous Mn-dependent SODs. Our studies on the Fe-substituted MnSOD of Escherichia coli, as well as redox tuning in the FeSOD of E. coli shed light on how evolution accommodated differences between Fe and Mn that would affect SOD performance, in SOD proteins whose activity is specific to one or other metal ion. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Mol Biol Int
                Mol Biol Int
                MBI
                Molecular Biology International
                Hindawi Publishing Corporation
                2090-2182
                2090-2190
                2015
                26 November 2015
                : 2015
                : 238586
                Affiliations
                1Clinic of Anesthesia and Intensive Care, Emergency County Hospital “Pius Brinzeu”, 300736 Timisoara, Romania
                2Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
                3Faculty of Chemistry, Biology, Geography, West University of Timisoara, 300115 Timisoara, Romania
                4Clinic of Anesthesia and Intensive Care “Casa Austria”, Emergency County Hospital “Pius Brinzeu”, 300736 Timisoara, Romania
                Author notes

                Academic Editor: Sharad S. Singhal

                Article
                10.1155/2015/238586
                4674615
                55f7613e-1628-445a-86ed-421a847f69c5
                Copyright © 2015 Marius Papurica et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 7 August 2015
                : 15 October 2015
                Categories
                Review Article

                Molecular biology
                Molecular biology

                Comments

                Comment on this article