8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Consequences of Mixotrophy on Cell Energetic Metabolism in Microchloropsis gaditana Revealed by Genetic Engineering and Metabolic Approaches

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Algae belonging to the Microchloropsis genus are promising organisms for biotech purposes, being able to accumulate large amounts of lipid reserves. These organisms adapt to different trophic conditions, thriving in strict photoautotrophic conditions, as well as in the concomitant presence of light plus reduced external carbon as energy sources (mixotrophy). In this work, we investigated the mixotrophic responses of Microchloropsis gaditana (formerly Nannochloropsis gaditana). Using the Biolog growth test, in which cells are loaded into multiwell plates coated with different organic compounds, we could not find a suitable substrate for Microchloropsis mixotrophy. By contrast, addition of the Lysogeny broth (LB) to the inorganic growth medium had a benefit on growth, enhancing respiratory activity at the expense of photosynthetic performances. To further dissect the role of respiration in Microchloropsis mixotrophy, we focused on the mitochondrial alternative oxidase (AOX), a protein involved in energy management in other algae prospering in mixotrophy. Knocking-out the AOX1 gene by transcription activator-like effector nuclease (TALE-N) led to the loss of capacity to implement growth upon addition of LB supporting the hypothesis that the effect of this medium was related to a provision of reduced carbon. We conclude that mixotrophic growth in Microchloropsis is dominated by respiratory rather than by photosynthetic energetic metabolism and discuss the possible reasons for this behavior in relationship with fatty acid breakdown via β-oxidation in this oleaginous alga.

          Related collections

          Most cited references81

          • Record: found
          • Abstract: found
          • Article: not found

          A TALE nuclease architecture for efficient genome editing.

          Nucleases that cleave unique genomic sequences in living cells can be used for targeted gene editing and mutagenesis. Here we develop a strategy for generating such reagents based on transcription activator-like effector (TALE) proteins from Xanthomonas. We identify TALE truncation variants that efficiently cleave DNA when linked to the catalytic domain of FokI and use these nucleases to generate discrete edits or small deletions within endogenous human NTF3 and CCR5 genes at efficiencies of up to 25%. We further show that designed TALEs can regulate endogenous mammalian genes. These studies demonstrate the effective application of designed TALE transcription factors and nucleases for the targeted regulation and modification of endogenous genes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chlorophyll fluorescence--a practical guide.

            Chlorophyll fluorescence analysis has become one of the most powerful and widely used techniques available to plant physiologists and ecophysiologists. This review aims to provide an introduction for the novice into the methodology and applications of chlorophyll fluorescence. After a brief introduction into the theoretical background of the technique, the methodology and some of the technical pitfalls that can be encountered are explained. A selection of examples is then used to illustrate the types of information that fluorescence can provide.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              THE WATER-WATER CYCLE IN CHLOROPLASTS: Scavenging of Active Oxygens and Dissipation of Excess Photons.

              Kozi Asada (1999)
              Photoreduction of dioxygen in photosystem I (PSI) of chloroplasts generates superoxide radicals as the primary product. In intact chloroplasts, the superoxide and the hydrogen peroxide produced via the disproportionation of superoxide are so rapidly scavenged at the site of their generation that the active oxygens do not inactivate the PSI complex, the stromal enzymes, or the scavenging system itself. The overall reaction for scavenging of active oxygens is the photoreduction of dioxygen to water via superoxide and hydrogen peroxide in PSI by the electrons derived from water in PSII, and the water-water cycle is proposed for these sequences. An overview is given of the molecular mechanism of the water-water cycle and microcompartmentalization of the enzymes participating in it. Whenever the water-water cycle operates properly for scavenging of active oxygens in chloroplasts, it also effectively dissipates excess excitation energy under environmental stress. The dual functions of the water-water cycle for protection from photoinihibition are discussed.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                25 May 2021
                2021
                : 12
                : 628684
                Affiliations
                [1] 1Université Grenoble Alpes (UGA), Centre National Recherche Scientifique (CNRS), Commissariat Energie Atomique, Energies Alternatives (CEA), Institut National Recherche Agriculture, Alimentation, Environnement (INRAE), Interdisciplinary Research Institute of Grenoble, IRIG-Laboratoire de Physiologie Cellulaire et Végétale , Grenoble, France
                [2] 2Total Refining Chemicals, Tour Coupole , Paris La Défense, France
                Author notes

                Edited by: Miroslav Obornik, Institute of Parasitology, Academy of Sciences of the Czech Republic (ASCR), Czechia

                Reviewed by: Tereza Sevcikova, University of Ostrava, Czechia; Melissa Cano, Colorado School of Mines, United States; Benjamin Bailleul, Centre National de la Recherche Scientifique (CNRS), France

                *Correspondence: Giovanni Finazzi, giovanni.finazzi@ 123456cea.fr

                These authors share first authorship

                Present address: Leonardo Magneschi, Ingenza Ltd., Roslin Innovation Centre, Roslin, United Kingdom

                This article was submitted to Marine and Freshwater Plants, a section of the journal Frontiers in Plant Science

                Article
                10.3389/fpls.2021.628684
                8185151
                560dd66a-f2ef-473c-8f76-375e220bceb3
                Copyright © 2021 Bo, Magneschi, Bedhomme, Billey, Deragon, Storti, Menneteau, Richard, Rak, Lapeyre, Lembrouk, Conte, Gros, Tourcier, Giustini, Falconet, Curien, Allorent, Petroutsos, Laeuffer, Fourage, Jouhet, Maréchal, Finazzi and Collin.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 12 November 2020
                : 31 March 2021
                Page count
                Figures: 5, Tables: 0, Equations: 2, References: 81, Pages: 13, Words: 0
                Categories
                Plant Science
                Original Research

                Plant science & Botany
                microchloropsis gaditana,mixotrophy,photosynthesis,mitochondrial alternative oxidase,tale nuclease,lipid metabolism

                Comments

                Comment on this article