1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Serum cystatin C: A potential predictor for hospital-acquired acute kidney injury in patients with acute exacerbation of COPD

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hospital-acquired acute kidney injury (HA-AKI) is associated with poor prognosis. In this study, we evaluated whether serum cystatin C on admission could predict AKI in patients with acute exacerbation of chronic obstructive pulmonary disease (AECOPD). The retrospective study was conducted using data on adult inpatients with AECOPD from January 2014 to January 2017. A total of 1035 patients were included, among which 79 (7.6%) with HA-AKI were identified. Univariate and multivariate logistic regression analyses were used to investigate predictors of HA-AKI in patients with AECOPD. HA-AKI was associated with poor prognosis, and patients with HA-AKI had higher inpatient mortality (34.2% vs. 2.6%, p < 0.001). Furthermore, after adjusting for confounders, HA-AKI was an independent risk factor for inpatient mortality for patients with AECOPD (odds ratio (OR) 11.02; 95% confidence interval (CI) 4.77–25.45; p < 0.001). Four independent risk factors for HA-AKI (age, levels of urea and cystatin C, and platelet count on admission) were identified in patients with AECOPD. Cystatin C (OR 5.22; 95% CI 2.49–10.95; p < 0.001) was a significant independent predictor of AKI in patients with AECOPD. HA-AKI in patients with AECOPD could be identified with a sensitivity of 73.5% and a specificity of 75.9% (area under the curve (AUC) = 0.803, 95% CI 0.747–0.859) by cystatin C level (cutoff value = 1.3 mg/L) and with a sensitivity of 75.9% and a specificity of 82.0% (AUC = 0.853, 95% CI 0.810–0.896) using a model comprising all significant predictors. Serum cystatin C has the potential for use to predict the risk of HA-AKI in patients with AECOPD.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Minimal changes of serum creatinine predict prognosis in patients after cardiothoracic surgery: a prospective cohort study.

          Acute renal failure increases risk of death after cardiac surgery. However, it is not known whether more subtle changes in renal function might have an impact on outcome. Thus, the association between small serum creatinine changes after surgery and mortality, independent of other established perioperative risk indicators, was analyzed. In a prospective cohort study in 4118 patients who underwent cardiac and thoracic aortic surgery, the effect of changes in serum creatinine within 48 h postoperatively on 30-d mortality was analyzed. Cox regression was used to correct for various established demographic preoperative risk indicators, intraoperative parameters, and postoperative complications. In the 2441 patients in whom serum creatinine decreased, early mortality was 2.6% in contrast to 8.9% in patients with increased postoperative serum creatinine values. Patients with large decreases (DeltaCrea or =0.5 mg/dl. For all groups, increases in mortality remained significant in multivariate analyses, including postoperative renal replacement therapy. After cardiac and thoracic aortic surgery, 30-d mortality was lowest in patients with a slight postoperative decrease in serum creatinine. Any even minimal increase or profound decrease of serum creatinine was associated with a substantial decrease in survival.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            The definition of acute kidney injury and its use in practice

            Acute kidney injury (AKI) is a common syndrome that is independently associated with increased mortality. A standardized definition is important to facilitate clinical care and research. The definition of AKI has evolved rapidly since 2004, with the introduction of the Risk, Injury, Failure, Loss, and End-stage renal disease (RIFLE), AKI Network (AKIN), and Kidney Disease Improving Global Outcomes (KDIGO) classifications. RIFLE was modified for pediatric use (pRIFLE). They were developed using both evidence and consensus. Small rises in serum creatinine are independently associated with increased mortality, and hence are incorporated into the current definition of AKI. The recent definition from the international KDIGO guideline merged RIFLE and AKIN. Systematic review has found that these definitions do not differ significantly in their performance. Health-care staff caring for children or adults should use standard criteria for AKI, such as the pRIFLE or KDIGO definitions, respectively. These efforts to standardize AKI definition are a substantial advance, although areas of uncertainty remain. The new definitions have enabled the use of electronic alerts to warn clinicians of possible AKI. Novel biomarkers may further refine the definition of AKI, but their use will need to produce tangible improvements in outcomes and cost effectiveness. Further developments in AKI definitions should be informed by research into their practical application across health-care providers. This review will discuss the definition of AKI and its use in practice for clinicians and laboratory scientists.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Detection of chronic kidney disease with creatinine, cystatin C, and urine albumin-to-creatinine ratio and association with progression to end-stage renal disease and mortality.

              A triple-marker approach for chronic kidney disease (CKD) evaluation has not been well studied. To evaluate whether combining creatinine, cystatin C, and urine albumin-to-creatinine ratio (ACR) would improve identification of risks associated with CKD compared with creatinine alone. Prospective cohort study involving 26,643 US adults enrolled in the Reasons for Geographic and Racial Differences in Stroke (REGARDS) study from January 2003 to June 2010. Participants were categorized into 8 groups defined by estimated glomerular filtration rate (GFR) determined by creatinine and by cystatin C of either <60 or ≥60 mL/min/1.73 m(2) and ACR of either <30 or ≥30 mg/g. All-cause mortality and incident end-stage renal disease with median follow-up of 4.6 years. Participants had a mean age of 65 years, 40% were black, and 54% were women. Of 26,643 participants, 1940 died and 177 developed end-stage renal disease. Among participants without CKD defined by creatinine, 24% did not have CKD by either ACR or cystatin C. Compared with those with CKD defined by creatinine alone, the hazard ratio for death in multivariable-adjusted models was 3.3 (95% confidence interval [CI], 2.0-5.6) for participants with CKD defined by creatinine and ACR; 3.2 (95% CI, 2.2-4.7) for those with CKD defined by creatinine and cystatin C, and 5.6 (95% CI, 3.9-8.2) for those with CKD defined by all biomarkers. Among participants without CKD defined by creatinine, 3863 (16%) had CKD detected by ACR or cystatin C. Compared with participants who did not have CKD by any measure, the HRs for mortality were 1.7 (95% CI, 1.4-1.9) for participants with CKD defined by ACR alone, 2.2 (95% CI, 1.9-2.7) for participants with CKD defined by cystatin C alone, and 3.0 (95% CI, 2.4-3.7) for participants with CKD defined by both measures. Risk of incident end-stage renal disease was higher among those with CKD defined by all markers (34.1 per 1000 person-years; 95% CI, 28.7-40.5 vs 0.33 per 1000 person-years; 95% CI, 0.05-2.3) for those with CKD defined by creatinine alone. The second highest end-stage renal disease rate was among persons missed by the creatinine measure but detected by both ACR and cystatin C (rate per 1000 person-years, 6.4; 95% CI, 3.6-11.3). Net reclassification improvement for death was 13.3% (P < .001) and for end-stage renal disease was 6.4% (P < .001) after adding estimated GFR cystatin C in fully adjusted models with estimated GFR creatinine and ACR. Adding cystatin C to the combination of creatinine and ACR measures improved the predictive accuracy for all-cause mortality and end-stage renal disease.
                Bookmark

                Author and article information

                Journal
                Chron Respir Dis
                Chron Respir Dis
                CRD
                spcrd
                Chronic Respiratory Disease
                SAGE Publications (Sage UK: London, England )
                1479-9723
                1479-9731
                14 September 2020
                Jan-Dec 2020
                : 17
                : 1479973120940677
                Affiliations
                [1 ]Department of Nephrology, Ringgold 385685, Nanjing First Hospital; , Nanjing Medical University, Nanjing, Jiangsu, China
                [2 ]Department of Nephrology, Sir Run Run Hospital, Ringgold 12461, universityNanjing Medical University; , Nanjing, Jiangsu, China
                [3 ]Department of Respiratory Medicine, Ringgold 385685, Nanjing First Hospital; , Nanjing Medical University, Nanjing, Jiangsu, China
                Author notes
                [*]Xin Wan, Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, Jiangsu 210006, China. Email: wanxin@ 123456njmu.edu.cn
                Author information
                https://orcid.org/0000-0001-5088-6565
                Article
                10.1177_1479973120940677
                10.1177/1479973120940677
                7493270
                32924598
                5617b7e4-3c45-4acc-8f1a-dc08f120b1b1
                © The Author(s) 2020

                This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License ( https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages ( https://us.sagepub.com/en-us/nam/open-access-at-sage).

                History
                : 03 March 2020
                : 12 June 2020
                Funding
                Funded by: Nanjing Health Youth Talents Training Project;
                Award ID: QRX17015
                Categories
                Original Paper
                Custom metadata
                January-December 2020
                ts3

                Respiratory medicine
                cystatin c,exacerbation,chronic obstructive pulmonary disease,hospital-acquired acute kidney injury,predictor

                Comments

                Comment on this article