3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Lankesterella (Apicomplexa, Lankesterellidae) Blood Parasites of Passeriform Birds: Prevalence, Molecular and Morphological Characterization, with Notes on Sporozoite Persistence In Vivo and Development In Vitro

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Simple Summary

          Birds are hosts of various apicomplexan blood parasites, whose blood stages are often similar, resulting in much ongoing debate about the taxonomic and genetic identity of some species. Parasites of several closely related apicomplexan genera can be distinguished mainly by differences in their life cycles in both vertebrate and invertebrate hosts. Recent studies confirmed that some avian blood parasites, which were formerly attributed to the genus Hepatozoon, are genetically closely related to the amphibian parasite Lankesterella minima and might belong to the genus Lankesterella. To understand the distribution and diversity of avian Lankesterella parasites, we examined samples from wild birds, combining molecular genetics and microscopic methods. Experiments which aim for a better understanding of the life cycle of these parasites, and their host specificity, were designed. We demonstrated that avian Lankesterella parasites are more diverse than previously thought, and several species of Hepatozoon described in birds in fact belong to Lankesterella. Two new Lankesterella species parasitizing birds are described, and one species is re-described. This study contributes to a better understanding of diversity and distribution of bird Lankesterella spp. and shows directions for future research on their pathogenicity.

          Abstract

          Recent studies confirmed that some Hepatozoon-like blood parasites (Apicomplexa) of birds are closely related to the amphibian parasite Lankesterella minima. Little is known about the biology of these pathogens in birds, including their distribution, life cycles, specificity, vectors, and molecular characterization. Using blood samples of 641 birds from 16 species, we (i) determined the prevalence and molecular diversity of Lankesterella parasites in naturally infected birds; (ii) investigated the development of Lankesterella kabeeni in laboratory-reared mosquitoes, Culex pipiens forma molestus and Aedes aegypti; and (iii) tested experimentally the susceptibility of domestic canaries, Serinus canaria, to this parasite. This study combined molecular and morphological diagnostic methods and determined 11% prevalence of Lankesterella parasites in Acrocephalidae birds; 16 Lankesterella lineages with a certain degree of host specificity and two new species ( Lankesterella vacuolata n. sp. and Lankesterella macrovacuolata n. sp.) were found and characterized. Lankesterella kabeeni (formerly Hepatozoon kabeeni) was re-described. Serinus canaria were resistant after various experimental exposures. Lankesterella sporozoites rapidly escaped from host cells in vitro. Sporozoites persisted for a long time in infected mosquitoes (up to 42 days post exposure). Our study demonstrated a high diversity of Lankesterella parasites in birds, and showed that several avian Hepatozoon-like parasites, in fact, belong to Lankesterella genus.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets.

          We present the latest version of the Molecular Evolutionary Genetics Analysis (Mega) software, which contains many sophisticated methods and tools for phylogenomics and phylomedicine. In this major upgrade, Mega has been optimized for use on 64-bit computing systems for analyzing larger datasets. Researchers can now explore and analyze tens of thousands of sequences in Mega The new version also provides an advanced wizard for building timetrees and includes a new functionality to automatically predict gene duplication events in gene family trees. The 64-bit Mega is made available in two interfaces: graphical and command line. The graphical user interface (GUI) is a native Microsoft Windows application that can also be used on Mac OS X. The command line Mega is available as native applications for Windows, Linux, and Mac OS X. They are intended for use in high-throughput and scripted analysis. Both versions are available from www.megasoftware.net free of charge.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MrBayes 3: Bayesian phylogenetic inference under mixed models.

            MrBayes 3 performs Bayesian phylogenetic analysis combining information from different data partitions or subsets evolving under different stochastic evolutionary models. This allows the user to analyze heterogeneous data sets consisting of different data types-e.g. morphological, nucleotide, and protein-and to explore a wide variety of structured models mixing partition-unique and shared parameters. The program employs MPI to parallelize Metropolis coupling on Macintosh or UNIX clusters.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization

              Abstract This article describes several features in the MAFFT online service for multiple sequence alignment (MSA). As a result of recent advances in sequencing technologies, huge numbers of biological sequences are available and the need for MSAs with large numbers of sequences is increasing. To extract biologically relevant information from such data, sophistication of algorithms is necessary but not sufficient. Intuitive and interactive tools for experimental biologists to semiautomatically handle large data are becoming important. We are working on development of MAFFT toward these two directions. Here, we explain (i) the Web interface for recently developed options for large data and (ii) interactive usage to refine sequence data sets and MSAs.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Animals (Basel)
                Animals (Basel)
                animals
                Animals : an Open Access Journal from MDPI
                MDPI
                2076-2615
                18 May 2021
                May 2021
                : 11
                : 5
                : 1451
                Affiliations
                [1 ]Nature Research Centre, Akademijos 2, 08412 Vilnius, Lithuania; vytautas.preiksa@ 123456gmail.com (V.P.); dovilebu7@ 123456gmail.com (D.B.); ilgunasmikas@ 123456gmail.com (M.I.); gediminas.valkiunas@ 123456gamtc.lt (G.V.)
                [2 ]Institute of Pathology, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria; josef.harl@ 123456vetmeduni.ac.at (J.H.); herbert.weissenboeck@ 123456vetmeduni.ac.at (H.W.)
                Author notes
                [* ]Correspondence: crfchagas@ 123456gmail.com
                Author information
                https://orcid.org/0000-0002-7884-9085
                https://orcid.org/0000-0003-0491-3619
                Article
                animals-11-01451
                10.3390/ani11051451
                8158525
                34070187
                561aa2e6-5cce-4f4c-ba5b-d19cf2121c18
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 19 April 2021
                : 14 May 2021
                Categories
                Article

                18s ribosomal rna,lankesterella,birds,development in vivo and in vitro,molecular and morphological characterization,phylogeny,hepatozoon

                Comments

                Comment on this article