+1 Recommend
2 collections
      • Record: found
      • Abstract: found
      • Article: found

      Vasopressin, from Regulator to Disease Predictor for Diabetes and Cardiometabolic Risk

      Annals of Nutrition and Metabolism

      S. Karger AG

      Vasopressin, Hydration, Diabetes mellitus, Copeptin, Cardiovascular disease

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Background: Type 2 diabetes and its cardiovascular disease complications are the major public health threats of our century. Although physical activity and dietary changes are the cornerstones in prevention of diabetes, their broad implementation is not elementary and other complementary lifestyle regimens are needed. Summary: Vasopressin (VP) is the main regulator of body water homeostasis, and at insufficient water intake, normal plasma osmolality can be maintained by increased pituitary VP secretion through VP-2 receptor mediated renal water reabsorption. During the last 6 years several independent studies have shown that high circulating VP, measured by the stable VP marker copeptin, predicts development of type 2 diabetes as well as the metabolic syndrome, cardiovascular disease and premature mortality. Interestingly, VP stimulates adrenocorticotrophic hormone, and as a consequence cortisol secretion, through pituitary VP-1B receptors, which could explain why the 25% of the middle-aged population with high circulating VP have a mild Cushing's syndrome-like phenotype. In rats, high VP results in deterioration of glucose tolerance whereas low VP, obtained by high water intake, ameliorates the VP associated dysmetabolic state, suggesting that the relationship between high VP and risk of diabetes and cardiometabolic disease in humans may be causal and reversible by increasing water intake. Key Messages: With the emerging evidence that high VP, which is present in 25% of the population, is an independent risk factor for diabetes and cardiometabolic disease, VP reduction through water supplementation appears as an attractive candidate intervention to prevent diabetes and its cardiovascular complications.

          Related collections

          Most cited references 20

          • Record: found
          • Abstract: found
          • Article: not found

          Banting lecture 1988. Role of insulin resistance in human disease.

           G M Reaven (1988)
          Resistance to insulin-stimulated glucose uptake is present in the majority of patients with impaired glucose tolerance (IGT) or non-insulin-dependent diabetes mellitus (NIDDM) and in approximately 25% of nonobese individuals with normal oral glucose tolerance. In these conditions, deterioration of glucose tolerance can only be prevented if the beta-cell is able to increase its insulin secretory response and maintain a state of chronic hyperinsulinemia. When this goal cannot be achieved, gross decompensation of glucose homeostasis occurs. The relationship between insulin resistance, plasma insulin level, and glucose intolerance is mediated to a significant degree by changes in ambient plasma free-fatty acid (FFA) concentration. Patients with NIDDM are also resistant to insulin suppression of plasma FFA concentration, but plasma FFA concentrations can be reduced by relatively small increments in insulin concentration. Consequently, elevations of circulating plasma FFA concentration can be prevented if large amounts of insulin can be secreted. If hyperinsulinemia cannot be maintained, plasma FFA concentration will not be suppressed normally, and the resulting increase in plasma FFA concentration will lead to increased hepatic glucose production. Because these events take place in individuals who are quite resistant to insulin-stimulated glucose uptake, it is apparent that even small increases in hepatic glucose production are likely to lead to significant fasting hyperglycemia under these conditions. Although hyperinsulinemia may prevent frank decompensation of glucose homeostasis in insulin-resistant individuals, this compensatory response of the endocrine pancreas is not without its price. Patients with hypertension, treated or untreated, are insulin resistant, hyperglycemic, and hyperinsulinemic. In addition, a direct relationship between plasma insulin concentration and blood pressure has been noted. Hypertension can also be produced in normal rats when they are fed a fructose-enriched diet, an intervention that also leads to the development of insulin resistance and hyperinsulinemia. The development of hypertension in normal rats by an experimental manipulation known to induce insulin resistance and hyperinsulinemia provides further support for the view that the relationship between the three variables may be a causal one.(ABSTRACT TRUNCATED AT 400 WORDS)
            • Record: found
            • Abstract: found
            • Article: not found

            Hyperglycemia and cardiovascular disease in type 2 diabetes.

             M. Laakso (1999)
            Cardiovascular disease (coronary heart disease, stroke, peripheral vascular disease) is the most important cause of mortality and morbidity among patients with type 2 diabetes. Conventional risk factors contribute similarly to macrovascular complications in patients with type 2 diabetes and nondiabetic subjects, and therefore, other explanations have been sought for enhanced atherothrombosis in type 2 diabetes. Among characteristics specific for type 2 diabetes, hyperglycemia has recently been a focus of keen research. A recent meta-analysis of 20 studies on nondiabetic subjects has demonstrated that in the nondiabetic range of glycemia (<6.1 mmol/l), increased glucose is already associated with an increased risk for cardiovascular disease. Similarly, 12 recent prospective studies have convincingly indicated that hyperglycemia contributes to cardiovascular complications in patients with type 2 diabetes. The recently published U.K. Prospective Diabetes Study has shown that intensive glucose control reduces effectively microvascular complications among patients with type 2 diabetes, but that its effect on the prevention of cardiovascular complications was limited. Given the fact that in the U.K. Prospective Diabetes Study, none of the treatment modalities was particularly effective in reducing glucose, this underestimates the true potential of the correction of hyperglycemia in the prevention of cardiovascular disease in type 2 diabetes. However, in addition to intensive therapy of hyperglycemia, other conventional risk factors should also be normalized to prevent cardiovascular disease in patients with type 2 diabetes.
              • Record: found
              • Abstract: found
              • Article: not found

              Drinking water is associated with weight loss in overweight dieting women independent of diet and activity.

              Data from short-term experiments suggest that drinking water may promote weight loss by lowering total energy intake and/or altering metabolism. The long-term effects of drinking water on change in body weight and composition are unknown, however. This study tested for associations between absolute and relative increases in drinking water and weight loss over 12 months. Secondary analyses were conducted on data from the Stanford A TO Z weight loss intervention on 173 premenopausal overweight women (aged 25-50 years) who reported <1 l/day drinking water at baseline. Diet, physical activity, body weight, percent body fat (dual-energy X-ray absorptiometry), and waist circumference were assessed at baseline, 2, 6, and 12 months. At each time point, mean daily intakes of drinking water, noncaloric, unsweetened caloric (e.g., 100% fruit juice, milk) and sweetened caloric beverages, and food energy and nutrients were estimated using three unannounced 24-h diet recalls. Beverage intake was expressed in absolute (g) and relative terms (% of beverages). Mixed models were used to test for effects of absolute and relative increases in drinking water on changes in weight and body composition, controlling for baseline status, diet group, and changes in other beverage intake, the amount and composition of foods consumed and physical activity. Absolute and relative increases in drinking water were associated with significant loss of body weight and fat over time, independent of covariates. The results suggest that drinking water may promote weight loss in overweight dieting women.

                Author and article information

                Ann Nutr Metab
                Annals of Nutrition and Metabolism
                Ann Nutr Metab
                S. Karger AG (Basel, Switzerland karger@ 123456karger.com http://www.karger.com )
                June 2016
                16 June 2016
                : 68
                : 2
                : 24-28
                Department of Clinical Sciences, Lund University and Department of Internal Medicine, Skåne University Hospital, Malmö, Sweden
                ANM2016068S02024 Ann Nutr Metab 2016;68(suppl 2):24-28
                © 2016 The Author(s) Published by S. Karger AG, Basel

                This article is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND). Usage and distribution for commercial purposes as well as any distribution of modified material requires written permission. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 1, Tables: 1, References: 40, Pages: 5


                Comment on this article