18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Heterocyclic Aromatic Amines in Cooked Meat Products: Causes, Formation, Occurrence, and Risk Assessment : Heterocyclic amines in cooked meat products…

      Comprehensive Reviews in Food Science and Food Safety
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references245

          • Record: found
          • Abstract: found
          • Article: not found

          Heterocyclic amines: Mutagens/carcinogens produced during cooking of meat and fish.

          Research leading to the discovery of a series of mutagenic and carcinogenic heterocyclic amines (HCAs) was inspired by the idea that smoke produced during cooking of food, especially meat or fish, might be carcinogenic. More than ten kinds of HCAs, actually produced by cooking or heating of meat or fish, have now been isolated and their structures determined, most being previously unregistered compounds. They are highly mutagenic towards Salmonella typhimurium in the presence of S9 mix and are also mutagenic in vitro and in vivo toward mammalian cells. HCAs have now been chemically synthesized in quantity and subjected to long-term animal testing. When HCAs were fed in the diet, rodents developed cancers in many organs, including the colon, breast and prostate, and one HCA produced hepatomas in monkeys. The lesions exhibited alteration in genes including Apc, beta-catenin and Ha-ras, and these changes provide clues to the induction mechanisms. The HCAs are oxidized to hydroxyamino derivatives by cytochrome P450s, and further converted to ester forms by acetyltransferase and sulfotransferase. Eventually, they produce DNA adducts through the formation of N-C bonds at guanine bases. There are HCA-sensitive and resistant strains of rodents and a search for the responsible genes is now under way. While the content of HCAs in dishes consumed in ordinary life is low and not sufficient in itself to explain human cancer, the coexistence of many other mutagens/carcinogens of either autobiotic or xenobiotic type and the possibility that HCAs induce genomic instability and heightened sensitivity to tumor promoters suggest that avoidance of exposure to HCAs or reduction of HCAs' biological effects as far as possible are to be highly recommended. Usage of microwave ovens for cooking and supplementation of the diet, for example with soy-isoflavones, which have been found to suppress the occurrence of HCA-induced breast cancers, should be encouraged. Advice to the general public about how to reduce the carcinogenic load imposed by HCAs would be an important contribution to cancer prevention.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Carcinogenic Heterocyclic Amines in Model Systems and Cooked Foods: A Review on Formation, Occurrence and Intake

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Metabolism and biomarkers of heterocyclic aromatic amines in molecular epidemiology studies: lessons learned from aromatic amines.

              Aromatic amines and heterocyclic aromatic amines (HAAs) are structurally related classes of carcinogens that are formed during the combustion of tobacco or during the high-temperature cooking of meats. Both classes of procarcinogens undergo metabolic activation by N-hydroxylation of the exocyclic amine group to produce a common proposed intermediate, the arylnitrenium ion, which is the critical metabolite implicated in toxicity and DNA damage. However, the biochemistry and chemical properties of these compounds are distinct, and different biomarkers of aromatic amines and HAAs have been developed for human biomonitoring studies. Hemoglobin adducts have been extensively used as biomarkers to monitor occupational and environmental exposures to a number of aromatic amines; however, HAAs do not form hemoglobin adducts at appreciable levels, and other biomarkers have been sought. A number of epidemiologic studies that have investigated dietary consumption of well-done meat in relation to various tumor sites reported a positive association between cancer risk and well-done meat consumption, although some studies have shown no associations between well-done meat and cancer risk. A major limiting factor in most epidemiological studies is the uncertainty in quantitative estimates of chronic exposure to HAAs, and thus, the association of HAAs formed in cooked meat and cancer risk has been difficult to establish. There is a critical need to establish long-term biomarkers of HAAs that can be implemented in molecular epidemioIogy studies. In this review, we highlight and contrast the biochemistry of several prototypical carcinogenic aromatic amines and HAAs to which humans are chronically exposed. The biochemical properties and the impact of polymorphisms of the major xenobiotic-metabolizing enzymes on the biological effects of these chemicals are examined. Lastly, the analytical approaches that have been successfully employed to biomonitor aromatic amines and HAAs, and emerging biomarkers of HAAs that may be implemented in molecular epidemiology studies are discussed.
                Bookmark

                Author and article information

                Journal
                Comprehensive Reviews in Food Science and Food Safety
                COMPREHENSIVE REVIEWS IN FOOD SCIENCE AND FOOD SAFETY
                Wiley-Blackwell
                15414337
                March 2016
                March 22 2016
                : 15
                : 2
                : 269-302
                Article
                10.1111/1541-4337.12186
                33371602
                561fbbbf-9e6f-4146-b3b0-43ff87a7fc3b
                © 2016

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article