54
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genomic and metabolic analysis of fluoranthene degradation pathway in Celeribacter indicus P73 T

      research-article
      1 , 2 , 1 , 1 , a , 1
      Scientific Reports
      Nature Publishing Group

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Celeribacter indicus P73 T, isolated from deep-sea sediment from the Indian Ocean, is capable of degrading a wide range of polycyclic aromatic hydrocarbons (PAHs) and is the first fluoranthene-degrading bacterium within the family Rhodobacteraceae. Here, the complete genome sequence of strain P73 T is presented and analyzed. Besides a 4.5-Mb circular chromosome, strain P73 T carries five plasmids, and encodes 4827 predicted protein-coding sequences. One hundred and thirty-eight genes, including 14 dioxygenase genes, were predicted to be involved in the degradation of aromatic compounds, and most of these genes are clustered in four regions. P73_0346 is the first fluoranthene 7,8-dioxygenase to be discovered and the first fluoranthene dioxygenase within the toluene/biphenyl family. The degradative genes in regions B and D in P73 T are absent in Celeribacter baekdonensis B30, which cannot degrade PAHs. Four intermediate metabolites [acenaphthylene-1( 2H)-one, acenaphthenequinone, 1,2-dihydroxyacenaphthylene, and 1,8-naphthalic anhydride] of fluoranthene degradation by strain P73 T were detected as the main intermediates, indicating that the degradation of fluoranthene in P73 T was initiated by dioxygenation at the C-7,8 positions. Based on the genomic and metabolitic results, we propose a C-7,8 dioxygenation pathway in which fluoranthene is mineralized to TCA cycle intermediates.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          IslandViewer: an integrated interface for computational identification and visualization of genomic islands

          Summary: Genomic islands (clusters of genes of probable horizontal origin; GIs) play a critical role in medically important adaptations of bacteria. Recently, several computational methods have been developed to predict GIs that utilize either sequence composition bias or comparative genomics approaches. IslandViewer is a web accessible application that provides the first user-friendly interface for obtaining precomputed GI predictions, or predictions from user-inputted sequence, using the most accurate methods for genomic island prediction: IslandPick, IslandPath-DIMOB and SIGI-HMM. The graphical interface allows easy viewing and downloading of island data in multiple formats, at both the chromosome and gene level, for method-specific, or overlapping, GI predictions. Availability: The IslandViewer web service is available at http://www.pathogenomics.sfu.ca/islandviewer and the source code is freely available under the GNU GPL license. Contact: brinkman@sfu.ca
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The Transporter Classification Database: recent advances

            The Transporter Classification Database (TCDB), freely accessible at http://www.tcdb.org, is a relational database containing sequence, structural, functional and evolutionary information about transport systems from a variety of living organisms, based on the International Union of Biochemistry and Molecular Biology-approved transporter classification (TC) system. It is a curated repository for factual information compiled largely from published references. It uses a functional/phylogenetic system of classification, and currently encompasses about 5000 representative transporters and putative transporters in more than 500 families. We here describe novel software designed to support and extend the usefulness of TCDB. Our recent efforts render it more user friendly, incorporate machine learning to input novel data in a semiautomatic fashion, and allow analyses that are more accurate and less time consuming. The availability of these tools has resulted in recognition of distant phylogenetic relationships and tremendous expansion of the information available to TCDB users.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution.

              Virulence genes of pathogenic bacteria, which code for toxins, adhesins, invasins or other virulence factors, may be located on transmissible genetic elements such as transposons, plasmids or bacteriophages. In addition, such genes may be part of particular regions on the bacterial chromosomes, termed 'pathogenicity islands' (Pais). Pathogenicity islands are found in Gram-negative as well as in Gram-positive bacteria. They are present in the genome of pathogenic strains of a given species but absent or only rarely present in those of non-pathogenic variants of the same or related species. They comprise large DNA regions (up to 200 kb of DNA) and often carry more than one virulence gene, the G + C contents of which often differ from those of the remaining bacterial genome. In most cases, Pais are flanked by specific DNA sequences, such as direct repeats or insertion sequence (IS) elements. In addition, Pais of certain bacteria (e,g. uropathogenic Escherichia coli, Yersinia spp., Helicobacter pylori) have the tendency to delete with high frequencies or may undergo duplications and amplifications. Pais are often associated with tRNA loci, which may represent target sites for the chromosomal integration of these elements. Bacteriophage attachment sites and cryptic genes on Pais, which are homologous to phage integrase genes, plasmid origins of replication of IS elements, indicate that these particular genetic elements were previously able to spread among bacterial populations by horizontal gene transfer, a process known to contribute to microbial evolution.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                13 January 2015
                2015
                : 5
                : 7741
                Affiliations
                [1 ]State Key Laboratory Breeding Base of Marine Genetic Resources; Key Laboratory of Marine Genetic Resources, The Third Institute of State Oceanic Administration; Key Laboratory of Marine Genetic Resources of Fujian Province; Collaborative Innovation Center of Deep Sea Biology; Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources , Xiamen 361005, China
                [2 ]School of Municipal and Environmental Engineering, Harbin Institute of Technology , Harbin 150090, China
                Author notes
                [*]

                These authors contributed equally to this work.

                Article
                srep07741
                10.1038/srep07741
                4291564
                25582347
                5621e837-fee0-43d3-910f-88272d742d20
                Copyright © 2015, Macmillan Publishers Limited. All rights reserved

                This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/

                History
                : 16 July 2014
                : 20 November 2014
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article