Blog
About

16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Significant pharmacokinetic differences of berberine are attributable to variations in gut microbiota between Africans and Chinese

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We investigated the influence of gut microbiotal metabolism on the pharmacokinetics of berberine in healthy male Africans and Chinese. The C max and AUC in the Africans were 2.67-fold and 2.0-fold higher than the Chinese, respectively. Microbiotal compositions by 16S rRNA pyrosequencing showed higher abundance of the genera Prevotella, Bacteroides, and Megamonas (34.22, 13.88, and 10.68%, respectively) in the Chinese than the Africans (30.08, 9.43, and 0.48%, respectively). Scatter plot showed a strong negative correlation between the microbiotal abundance and the berberine AUC, especially for the genus Prevotella ( r = −0.813) and its species. A more extensive metabolism was observed in Chinese with 1.83-fold higher metabolites, possibly contributing to the lower AUC than the Africans. In conclusion, significant PK differences of berberine were observed between Africans and Chinese, which is partly attributable to variations in gut microbiota and its corresponding metabolic capacity.

          Related collections

          Most cited references 23

          • Record: found
          • Abstract: found
          • Article: not found

          Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa.

          Gut microbial composition depends on different dietary habits just as health depends on microbial metabolism, but the association of microbiota with different diets in human populations has not yet been shown. In this work, we compared the fecal microbiota of European children (EU) and that of children from a rural African village of Burkina Faso (BF), where the diet, high in fiber content, is similar to that of early human settlements at the time of the birth of agriculture. By using high-throughput 16S rDNA sequencing and biochemical analyses, we found significant differences in gut microbiota between the two groups. BF children showed a significant enrichment in Bacteroidetes and depletion in Firmicutes (P < 0.001), with a unique abundance of bacteria from the genus Prevotella and Xylanibacter, known to contain a set of bacterial genes for cellulose and xylan hydrolysis, completely lacking in the EU children. In addition, we found significantly more short-chain fatty acids (P < 0.001) in BF than in EU children. Also, Enterobacteriaceae (Shigella and Escherichia) were significantly underrepresented in BF than in EU children (P < 0.05). We hypothesize that gut microbiota coevolved with the polysaccharide-rich diet of BF individuals, allowing them to maximize energy intake from fibers while also protecting them from inflammations and noninfectious colonic diseases. This study investigates and compares human intestinal microbiota from children characterized by a modern western diet and a rural diet, indicating the importance of preserving this treasure of microbial diversity from ancient rural communities worldwide.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The gut microbiota shapes intestinal immune responses during health and disease.

            Immunological dysregulation is the cause of many non-infectious human diseases such as autoimmunity, allergy and cancer. The gastrointestinal tract is the primary site of interaction between the host immune system and microorganisms, both symbiotic and pathogenic. In this Review we discuss findings indicating that developmental aspects of the adaptive immune system are influenced by bacterial colonization of the gut. We also highlight the molecular pathways that mediate host-symbiont interactions that regulate proper immune function. Finally, we present recent evidence to support that disturbances in the bacterial microbiota result in dysregulation of adaptive immune cells, and this may underlie disorders such as inflammatory bowel disease. This raises the possibility that the mammalian immune system, which seems to be designed to control microorganisms, is in fact controlled by microorganisms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease

              Metabolomics studies hold promise for discovery of pathways linked to disease processes. Cardiovascular disease (CVD) represents the leading cause of death and morbidity worldwide. A metabolomics approach was used to generate unbiased small molecule metabolic profiles in plasma that predict risk for CVD. Three metabolites of the dietary lipid phosphatidylcholine, namely choline, trimethylamine N-oxide (TMAO), and betaine, were identified and then shown to predict risk for CVD in an independent large clinical cohort. Dietary supplementation of mice with choline, TMAO or betaine promoted up-regulation of multiple macrophage scavenger receptors linked to atherosclerosis, and supplementation with choline or TMAO promoted atherosclerosis. Studies using germ-free mice confirmed a critical role for dietary choline and gut flora in TMAO production, augmented macrophage cholesterol accumulation and foam cell formation. Suppression of intestinal microflora in atherosclerosis-prone mice inhibited dietary choline-enhanced atherosclerosis. Genetic variations controlling expression of flavin monooxygenases (FMOs), an enzymatic source of TMAO, segregated with atherosclerosis in hyperlipidemic mice. Discovery of a relationship between gut flora-dependent metabolism of dietary phosphatidylcholine and CVD pathogenesis provides opportunities for development of both novel diagnostic tests and therapeutic approaches for atherosclerotic heart disease.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                10 June 2016
                2016
                : 6
                Affiliations
                [1 ]State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing, Jiangsu, China
                [2 ]Department of Emergency Center, the First Affiliated Hospital of Nanjing Medical University , Nanjing, Jiangsu, China.
                Author notes
                Article
                srep27671
                10.1038/srep27671
                4901288
                27283523
                Copyright © 2016, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                Categories
                Article

                Uncategorized

                Comments

                Comment on this article