74
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The calcium-sensing receptor in physiology and in calcitropic and noncalcitropic diseases

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="P1">The Ca <sup>2+</sup>-sensing receptor (CaSR) is a dimeric family C G-protein-coupled receptor that is expressed in calcitropic tissues such as the parathyroid glands and kidneys, and signals via G-proteins and beta-arrestin. The CaSR plays a pivotal role in bone and mineral metabolism by regulating parathyroid hormone secretion, urinary Ca <sup>2+</sup> excretion, skeletal development and lactation. The importance of the CaSR for these calcitropic processes is highlighted by loss- and gain-of-function CaSR mutations, which cause familial hypocalciuric hypercalcaemia and autosomal dominant hypocalcaemia, respectively, and also by alterations in parathyroid CaSR expression, which contribute to the pathogenesis of primary and secondary hyperparathyroidism. Moreover, the CaSR is an established therapeutic target for hyperparathyroid disorders. The CaSR is also expressed in organs not involved in Ca <sup>2+</sup> homeostasis, where it has non-calcitropic roles that include lung and neuronal development, vascular tone, gastro-intestinal nutrient sensing, secretion of insulin and entero-endocrine hormones, and wound healing. Furthermore, abnormal expression or function of the CaSR is implicated in cardiovascular and neurological diseases, as well as in asthma, and the CaSR is reported to protect against colorectal cancer and neuroblastoma, but increase the malignant potential of prostate and breast cancers. This review will discuss these physiological and pathophysiological roles of the CaSR. </p>

          Related collections

          Most cited references224

          • Record: found
          • Abstract: found
          • Article: not found

          Cloning and characterization of an extracellular Ca(2+)-sensing receptor from bovine parathyroid.

          Maintenance of a stable internal environment within complex organisms requires specialized cells that sense changes in the extracellular concentration of specific ions (such as Ca2+). Although the molecular nature of such ion sensors is unknown, parathyroid cells possess a cell surface Ca(2+)-sensing mechanism that also recognizes trivalent and polyvalent cations (such as neomycin) and couples by changes in phosphoinositide turnover and cytosolic Ca2+ to regulation of parathyroid hormone secretion. The latter restores normocalcaemia by acting on kidney and bone. We now report the cloning of complementary DNA encoding an extracellular Ca(2+)-sensing receptor from bovine parathyroid with pharmacological and functional properties nearly identical to those of the native receptor. The novel approximately 120K receptor shares limited similarity with the metabotropic glutamate receptors and features a large extracellular domain, containing clusters of acidic amino-acid residues possibly involved in calcium binding, coupled to a seven-membrane-spanning domain like those in the G-protein-coupled receptor superfamily.
            • Record: found
            • Abstract: found
            • Article: not found

            Anatomical profiling of G protein-coupled receptor expression.

            G protein-coupled receptors (GPCRs) comprise the largest family of transmembrane signaling molecules and regulate a host of physiological and disease processes. To better understand the functions of GPCRs in vivo, we quantified transcript levels of 353 nonodorant GPCRs in 41 adult mouse tissues. Cluster analysis placed many GPCRs into anticipated anatomical and functional groups and predicted previously unidentified roles for less-studied receptors. From one such prediction, we showed that the Gpr91 ligand succinate can regulate lipolysis in white adipose tissue, suggesting that signaling by this citric acid cycle intermediate may regulate energy homeostasis. We also showed that pairwise analysis of GPCR expression across tissues may help predict drug side effects. This resource will aid studies to understand GPCR function in vivo and may assist in the identification of therapeutic targets.
              • Record: found
              • Abstract: found
              • Article: not found

              Extracellular calcium sensing and signalling.

              Ca2+ is well established as an intracellular second messenger. However, the molecular identification of a detector for extracellular Ca2+--the extracellular calcium-sensing receptor--has opened up the possibility that Ca2+ might also function as a messenger outside cells. Information about the local extracellular Ca2+ concentration is conveyed to the interior of many cell types through this unique G-protein-coupled receptor. Here, we describe new emerging concepts concerning the signalling function of extracellular Ca2+, with particular emphasis on the extracellular calcium-sensing receptor.

                Author and article information

                Journal
                Nature Reviews Endocrinology
                Nat Rev Endocrinol
                Springer Nature America, Inc
                1759-5029
                1759-5037
                November 15 2018
                Article
                10.1038/s41574-018-0115-0
                6535143
                30443043
                562d29be-d606-4eb3-974b-9aeea187a23a
                © 2018

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article

                Related Documents Log