26
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Efficiency of decolorization of different dyes using fungal biomass immobilized on different solid supports

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Different technologies may be used for decolorization of wastewater containing dyes. Among them, biological processes are the most promising because they seem to be environmentally safe. The aim of this study was to determine the efficiency of decolorization of two dyes belonging to different classes (azo and triphenylmethane dyes) by immobilized biomass of strains of fungi ( Pleurotus ostreatus – BWPH, Gleophyllum odoratum – DCa and Polyporus picipes – RWP17). Different solid supports were tested for biomass immobilization. The best growth of fungal strains was observed on the washer, brush, grid and sawdust supports. Based on the results of dye adsorption, the brush and the washer were selected for further study. These solid supports adsorbed dyes at a negligible level, while the sawdust adsorbed 82.5% of brilliant green and 19.1% of Evans blue. Immobilization of biomass improved dye removal. Almost complete decolorization of diazo dye Evans blue was reached after 24 h in samples of all strains immobilized on the washer. The process was slower when the brush was used for biomass immobilization. Comparable results were reached for brilliant green in samples with biomass of strains BWPH and RWP17. High decolorization effectiveness was reached in samples with dead fungal biomass. Intensive removal of the dyes by biomass immobilized on the washer corresponded to a significant decrease in phytotoxicity and a slight decrease in zootoxicity of the dye solutions. The best decolorization results as well as reduction in toxicity were observed for the strain P. picipes (RWP17).

          Related collections

          Most cited references72

          • Record: found
          • Abstract: found
          • Article: not found

          Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative.

          The control of water pollution has become of increasing importance in recent years. The release of dyes into the environment constitutes only a small proportion of water pollution, but dyes are visible in small quantities due to their brilliance. Tightening government legislation is forcing textile industries to treat their waste effluent to an increasingly high standard. Currently, removal of dyes from effluents is by physio-chemical means. Such methods are often very costly and although the dyes are removed, accumulation of concentrated sludge creates a disposal problem. There is a need to find alternative treatments that are effective in removing dyes from large volumes of effluents and are low in cost, such as biological or combination systems. This article reviews the current available technologies and suggests an effective, cheaper alternative for dye removal and decolourisation applicable on large scale.
            • Record: found
            • Abstract: not found
            • Article: not found

            Microbial decolorization of textile-dyecontaining effluents: A review

              • Record: found
              • Abstract: found
              • Article: not found

              Fungal decolorization of dye wastewaters: a review.

              In recent years, there has been an intensive research on fungal decolorization of dye wastewater. It is becoming a promising alternative to replace or supplement present treatment processes. This paper examines various fungi, living or dead cells, which are capable of decolorizing dye wastewaters; discusses various mechanisms involved; reports some elution and regeneration methods for fungal biomass; summarizes the present pretreatment methods for increasing the biosorption capacity of fungal biomass; discusses the effect of various factors on decolorization.

                Author and article information

                Contributors
                Journal
                Braz J Microbiol
                Braz. J. Microbiol
                Brazilian Journal of Microbiology
                Elsevier
                1517-8382
                1678-4405
                09 November 2017
                Apr-Jun 2018
                09 November 2017
                : 49
                : 2
                : 285-295
                Affiliations
                [0005]Silesian University of Technology, Environmental Biotechnology Department, Gliwice, Poland
                Author notes
                [* ] Corresponding author. wioletta.przystas@ 123456polsl.pl
                Article
                S1517-8382(16)30421-X
                10.1016/j.bjm.2017.06.010
                5913824
                29129408
                562d6196-8fbd-4fd0-bbbc-b17d64433aa2
                © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 23 May 2016
                : 2 June 2017
                Categories
                Research Paper

                immobilization,decolorization,fungi,azo dyes,triphenylmethane dyes

                Comments

                Comment on this article

                Related Documents Log