28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Genomic inference of the metabolism of cosmopolitan subsurface Archaea, Hadesarchaea.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The subsurface biosphere is largely unexplored and contains a broad diversity of uncultured microbes(1). Despite being one of the few prokaryotic lineages that is cosmopolitan in both the terrestrial and marine subsurface(2-4), the physiological and ecological roles of SAGMEG (South-African Gold Mine Miscellaneous Euryarchaeal Group) Archaea are unknown. Here, we report the metabolic capabilities of this enigmatic group as inferred from genomic reconstructions. Four high-quality (63-90% complete) genomes were obtained from White Oak River estuary and Yellowstone National Park hot spring sediment metagenomes. Phylogenomic analyses place SAGMEG Archaea as a deeply rooting sister clade of the Thermococci, leading us to propose the name Hadesarchaea for this new Archaeal class. With an estimated genome size of around 1.5 Mbp, the genomes of Hadesarchaea are distinctly streamlined, yet metabolically versatile. They share several physiological mechanisms with strict anaerobic Euryarchaeota. Several metabolic characteristics make them successful in the subsurface, including genes involved in CO and H2 oxidation (or H2 production), with potential coupling to nitrite reduction to ammonia (DNRA). This first glimpse into the metabolic capabilities of these cosmopolitan Archaea suggests they are mediating key geochemical processes and are specialized for survival in the subsurface biosphere.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Genome streamlining in a cosmopolitan oceanic bacterium.

          The SAR11 clade consists of very small, heterotrophic marine alpha-proteobacteria that are found throughout the oceans, where they account for about 25% of all microbial cells. Pelagibacter ubique, the first cultured member of this clade, has the smallest genome and encodes the smallest number of predicted open reading frames known for a free-living microorganism. In contrast to parasitic bacteria and archaea with small genomes, P. ubique has complete biosynthetic pathways for all 20 amino acids and all but a few cofactors. P. ubique has no pseudogenes, introns, transposons, extrachromosomal elements, or inteins; few paralogs; and the shortest intergenic spacers yet observed for any cell.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Distributions of microbial activities in deep subseafloor sediments.

            S D'Hondt (2004)
            Diverse microbial communities and numerous energy-yielding activities occur in deeply buried sediments of the eastern Pacific Ocean. Distributions of metabolic activities often deviate from the standard model. Rates of activities, cell concentrations, and populations of cultured bacteria vary consistently from one subseafloor environment to another. Net rates of major activities principally rely on electron acceptors and electron donors from the photosynthetic surface world. At open-ocean sites, nitrate and oxygen are supplied to the deepest sedimentary communities through the underlying basaltic aquifer. In turn, these sedimentary communities may supply dissolved electron donors and nutrients to the underlying crustal biosphere.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fermentation, hydrogen, and sulfur metabolism in multiple uncultivated bacterial phyla.

              BD1-5, OP11, and OD1 bacteria have been widely detected in anaerobic environments, but their metabolisms remain unclear owing to lack of cultivated representatives and minimal genomic sampling. We uncovered metabolic characteristics for members of these phyla, and a new lineage, PER, via cultivation-independent recovery of 49 partial to near-complete genomes from an acetate-amended aquifer. All organisms were nonrespiring anaerobes predicted to ferment. Three augment fermentation with archaeal-like hybrid type II/III ribulose-1,5-bisphosphate carboxylase-oxygenase (RuBisCO) that couples adenosine monophosphate salvage with CO(2) fixation, a pathway not previously described in Bacteria. Members of OD1 reduce sulfur and may pump protons using archaeal-type hydrogenases. For six organisms, the UGA stop codon is translated as tryptophan. All bacteria studied here may play previously unrecognized roles in hydrogen production, sulfur cycling, and fermentation of refractory sedimentary carbon.
                Bookmark

                Author and article information

                Journal
                Nat Microbiol
                Nature microbiology
                2058-5276
                2058-5276
                2016
                : 1
                Affiliations
                [1 ] Department of Marine Science, University of Texas Austin, Marine Science Institute, Port Aransas, Texas 78373, USA.
                [2 ] Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden.
                [3 ] MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany.
                [4 ] Department of Marine Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
                Article
                nmicrobiol20162
                10.1038/nmicrobiol.2016.2
                27572167
                56309389-aea9-49a5-b50f-69a223dfaf95
                History

                Comments

                Comment on this article