151
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Psychosocial deprivation, executive functions, and the emergence of socio-emotional behavior problems

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Early psychosocial deprivation can negatively impact the development of executive functions (EFs). Here we explore the impact of early psychosocial deprivation on behavioral and physiological measures (i.e., event-related potentials; ERPs) of two facets of EF, inhibitory control and response monitoring, and their associations with internalizing and externalizing outcomes in the Bucharest Early Intervention Project (BEIP; Zeanah et al., 2003). This project focuses on two groups of children placed in institutions shortly after birth and then randomly assigned in infancy to either a foster care intervention or to remain in their current institutional setting. A group of community controls was recruited for comparison. The current study assesses these children at 8-years of age examining the effects of early adversity, the potential effects of the intervention on EF and the role of EF skills in socio-emotional outcomes. Results reveal exposure to early psychosocial deprivation was associated with impaired inhibitory control on a flanker task. Children in the foster care intervention exhibited better response monitoring compared to children who remained in the institution on the error-related positivity (Pe). Moreover, among children in the foster care intervention those who exhibited larger error-related negativity (ERN) responses had lower levels of socio-emotional behavior problems. Overall, these data identify specific aspects of EF that contribute to adaptive and maladaptive socio-emotional outcomes among children experiencing early psychosocial deprivation.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Error-related brain potentials are differentially related to awareness of response errors: evidence from an antisaccade task.

          The error negativity (Ne/ERN) and error positivity (Pe) are two components of the event-related brain potential (ERP) that are associated with action monitoring and error detection. To investigate the relation between error processing and conscious self-monitoring of behavior, the present experiment examined whether an Ne and Pe are observed after response errors of which participants are unaware. Ne and Pe measures, behavioral accuracy, and trial-to-trial subjective accuracy judgments were obtained from participants performing an antisaccade task, which elicits many unperceived, incorrect reflex-like saccades. Consistent with previous research, subjectively unperceived saccade errors were almost always immediately corrected, and were associated with faster correction times and smaller saccade sizes than perceived errors. Importantly, irrespective of whether the participant was aware of the error or not, erroneous saccades were followed by a sizable Ne. In contrast, the Pe was much more pronounced for perceived than for unperceived errors. Unperceived errors were characterized by the absence of posterror slowing. These and other results are consistent with the view that the Ne and Pe reflect the activity of two separate error monitoring processes, of which only the later process, reflected by the Pe, is associated with conscious error recognition and remedial action.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The timing of action-monitoring processes in the anterior cingulate cortex.

            The anterior cingulate cortex (ACC) has been shown to respond to conflict between simultaneously active, incompatible response tendencies. This area is active during high-conflict correct trials and also when participants make errors. Here, we use the temporal resolution of high-density event-related potentials (ERPs) in combination with source localization to investigate the timing of ACC activity during conflict and error detection. We predicted that the same area of the ACC is active prior to high-conflict correct responses and following erroneous responses. Dipole modeling supported this prediction: The frontocentral N2, occurring prior to the response on correct conflict trials, and the ERN, occurring immediately following error responses, could both be modeled as having a generator in the caudal ACC, suggesting the same process to underlie both peaks. Modeling further suggested that the rostral area of the ACC was also active following errors, but later in time, contributing to the error positivity (P(E)), and peaking at 200-250 msec following the ERN peak. Despite the inherent limitations of source localization, these data may begin to shed light on the timing of action-monitoring processes. First, the time course of caudal ACC activity follows the time course as predicted by the conflict theory of this region. Second, caudal ACC activity might be temporally dissociated from rostral ACC activity during error trials, which possibly reflects a separate, affective component of the evaluative functions of the ACC.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Post-error slowing: an orienting account.

              It is generally assumed that slowing after errors is a cognitive control effect reflecting more careful response strategies after errors. However, clinical data are not compatible with this explanation. We therefore consider two alternative explanations, one referring to the possibility of a persisting underlying problem and one on the basis of the low frequency of errors (orienting account). This latter hypothesis argues that infrequent events orient attention away from the task. Support for the orienting account was obtained in two experiments. Using a new experimental procedure, Experiment 1 demonstrated post-error slowing after infrequent errors and post-correct slowing after infrequent correct trials. In Experiment 2, slowing was observed following infrequent irrelevant tones replacing the feedback signals.
                Bookmark

                Author and article information

                Journal
                Front Hum Neurosci
                Front Hum Neurosci
                Front. Hum. Neurosci.
                Frontiers in Human Neuroscience
                Frontiers Media S.A.
                1662-5161
                10 May 2013
                2013
                : 7
                : 167
                Affiliations
                [1] 1Department of Psychology, University of Massachusetts Amherst, MA, USA
                [2] 2Department of Human Development and Quantitative Methodology, University of Maryland College Park, MA, USA
                [3] 3Children's Hospital Boston and Harvard Medical School, Harvard Center on the Developing Child Boston, MA, USA
                [4] 4Department of Medicine, Tulane University School of Medicine New Orleans, LA, USA
                Author notes

                Edited by: Alexander J. Shackman, University of Maryland, USA

                Reviewed by: Megan Gunnar, University of Minnesota, USA; Tracy Dennis, Hunter College, USA

                *Correspondence: Nathan A. Fox, Department of Human Development and Quantitative Methodology, Child Development Lab, University of Maryland, 3304 Benjamin Building, College Park, MA 20742-1131, USA. e-mail: fox@ 123456umd.edu
                Article
                10.3389/fnhum.2013.00167
                3650621
                23675333
                5631bef3-2855-433a-b500-036129f46736
                Copyright © 2013 McDermott, Troller-Renfree, Vanderwert, Nelson, Zeanah and Fox.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.

                History
                : 15 January 2013
                : 16 April 2013
                Page count
                Figures: 3, Tables: 2, Equations: 0, References: 73, Pages: 11, Words: 8948
                Categories
                Neuroscience
                Original Research Article

                Neurosciences
                event-related potential (erp),error-related negativity,executive function,conflict monitoring,inhibitory control,institutionalization

                Comments

                Comment on this article