39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      How do geological sampling biases affect studies of morphological evolution in deep time? A case study of pterosaur (Reptilia: Archosauria) disparity.

      Evolution; International Journal of Organic Evolution
      Animals, Biological Evolution, Fossils, Regression Analysis, Reptiles

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A fundamental contribution of paleobiology to macroevolutionary theory has been the illumination of deep time patterns of diversification. However, recent work has suggested that taxonomic diversity counts taken from the fossil record may be strongly biased by uneven spatiotemporal sampling. Although morphological diversity (disparity) is also frequently used to examine evolutionary radiations, no empirical work has yet addressed how disparity might be affected by uneven fossil record sampling. Here, we use pterosaurs (Mesozoic flying reptiles) as an exemplar group to address this problem. We calculate multiple disparity metrics based upon a comprehensive anatomical dataset including a novel phylogenetic correction for missing data, statistically compare these metrics to four geological sampling proxies, and use multiple regression modeling to assess the importance of uneven sampling and exceptional fossil deposits (Lagerstätten). We find that range-based disparity metrics are strongly affected by uneven fossil record sampling, and should therefore be interpreted cautiously. The robustness of variance-based metrics to sample size and geological sampling suggests that they can be more confidently interpreted as reflecting true biological signals. In addition, our results highlight the problem of high levels of missing data for disparity analyses, indicating a pressing need for more theoretical and empirical work. © 2011 The Author(s). Evolution © 2011 The Society for the Study of Evolution.

          Related collections

          Author and article information

          Journal
          22220871
          10.1111/j.1558-5646.2011.01415.x

          Chemistry
          Animals,Biological Evolution,Fossils,Regression Analysis,Reptiles
          Chemistry
          Animals, Biological Evolution, Fossils, Regression Analysis, Reptiles

          Comments

          Comment on this article