14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nonbinary stabilizer codes over finite fields

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          One formidable difficulty in quantum communication and computation is to protect information-carrying quantum states against undesired interactions with the environment. In past years, many good quantum error-correcting codes had been derived as binary stabilizer codes. Fault-tolerant quantum computation prompted the study of nonbinary quantum codes, but the theory of such codes is not as advanced as that of binary quantum codes. This paper describes the basic theory of stabilizer codes over finite fields. The relation between stabilizer codes and general quantum codes is clarified by introducing a Galois theory for these objects. A characterization of nonbinary stabilizer codes over GF(q) in terms of classical codes over GF(q^2) is provided that generalizes the well-known notion of additive codes over GF(4) of the binary case. This paper derives lower and upper bounds on the minimum distance of stabilizer codes, gives several code constructions, and derives numerous families of stabilizer codes, including quantum Hamming codes, quadratic residue codes, quantum Melas codes, quantum BCH codes, and quantum character codes. The puncturing theory by Rains is generalized to additive codes that are not necessarily pure. Bounds on the maximal length of maximum distance separable stabilizer codes are given. A discussion of open problems concludes this paper.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Good Quantum Error-Correcting Codes Exist

          , (2009)
          A quantum error-correcting code is defined to be a unitary mapping (encoding) of k qubits (2-state quantum systems) into a subspace of the quantum state space of n qubits such that if any t of the qubits undergo arbitrary decoherence, not necessarily independently, the resulting n qubits can be used to faithfully reconstruct the original quantum state of the k encoded qubits. Quantum error-correcting codes are shown to exist with asymptotic rate k/n = 1 - 2H(2t/n) where H(p) is the binary entropy function -p log p - (1-p) log (1-p). Upper bounds on this asymptotic rate are given.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Quantum error correction via codes over GF(4)

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Quantum Error Correction and Orthogonal Geometry

              A group theoretic framework is introduced that simplifies the description of known quantum error-correcting codes and greatly facilitates the construction of new examples. Codes are given which map 3 qubits to 8 qubits correcting 1 error, 4 to 10 qubits correcting 1 error, 1 to 13 qubits correcting 2 errors, and 1 to 29 qubits correcting 5 errors.
                Bookmark

                Author and article information

                Journal
                2005-08-08
                2005-08-17
                Article
                quant-ph/0508070
                563cc3b2-072e-44bc-af03-5b157599f921
                History
                Custom metadata
                58 pages, LaTeX
                quant-ph cs.IT math.IT

                Quantum physics & Field theory,Numerical methods,Information systems & theory

                Comments

                Comment on this article