29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Optimization strategies of composite phase change materials for thermal energy storage, transfer, conversion and utilization

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Thermal energy harvesting technologies based on composite phase change materials (PCMs) are capable of harvesting tremendous amounts of thermal energy via isothermal phase transitions, thus showing enormous potential in the design of state-of-the-art renewable energy infrastructure.

          Abstract

          Thermal energy harvesting technologies based on composite phase change materials (PCMs) are capable of harvesting tremendous amounts of thermal energy via isothermal phase transitions, thus showing enormous potential in the design of state-of-the-art renewable energy infrastructure. Great progress has been recently made in terms of enhancing the thermal energy storage capability, transfer rate, conversion efficiency and utilization of composite PCMs. Although there are some recent reviews on composite PCMs, they are mainly concentrated on the thermal transfer enhancement and conventional utilization of PCMs. There are few systematic reviews concerning optimization strategies of PCM for thermal energy conversion. In particular, advanced multifunctional utilization of PCMs is still in its infancy. Herein, we systematically summarize the optimization strategies and mechanisms of recently reported composite PCMs for thermal energy storage, thermal transfer, energy conversion (solar-to-thermal, electro-to-thermal and magnetic-to-thermal conversion) and advanced utilization (fluorescence emission, infrared stealth technologies, drug release systems, thermotherapy and thermal protection), including some novel supporting materials (BN nanosheets and metal organic frameworks (MOFs)). Simultaneously, we provide in-depth and constructive insights into the correlations between the structural optimization strategies and thermal performances of composite PCMs. Finally, future research trends, alternative strategies and prospects are also highlighted according to up-to-date optimization strategies.

          Related collections

          Most cited references262

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Ultrastructural Characterization of the Lower Motor System in a Mouse Model of Krabbe Disease

          Krabbe disease (KD) is a neurodegenerative disorder caused by the lack of β- galactosylceramidase enzymatic activity and by widespread accumulation of the cytotoxic galactosyl-sphingosine in neuronal, myelinating and endothelial cells. Despite the wide use of Twitcher mice as experimental model for KD, the ultrastructure of this model is partial and mainly addressing peripheral nerves. More details are requested to elucidate the basis of the motor defects, which are the first to appear during KD onset. Here we use transmission electron microscopy (TEM) to focus on the alterations produced by KD in the lower motor system at postnatal day 15 (P15), a nearly asymptomatic stage, and in the juvenile P30 mouse. We find mild effects on motorneuron soma, severe ones on sciatic nerves and very severe effects on nerve terminals and neuromuscular junctions at P30, with peripheral damage being already detectable at P15. Finally, we find that the gastrocnemius muscle undergoes atrophy and structural changes that are independent of denervation at P15. Our data further characterize the ultrastructural analysis of the KD mouse model, and support recent theories of a dying-back mechanism for neuronal degeneration, which is independent of demyelination.
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            In situ click chemistry generation of cyclooxygenase-2 inhibitors

            Cyclooxygenase-2 isozyme is a promising anti-inflammatory drug target, and overexpression of this enzyme is also associated with several cancers and neurodegenerative diseases. The amino-acid sequence and structural similarity between inducible cyclooxygenase-2 and housekeeping cyclooxygenase-1 isoforms present a significant challenge to design selective cyclooxygenase-2 inhibitors. Herein, we describe the use of the cyclooxygenase-2 active site as a reaction vessel for the in situ generation of its own highly specific inhibitors. Multi-component competitive-binding studies confirmed that the cyclooxygenase-2 isozyme can judiciously select most appropriate chemical building blocks from a pool of chemicals to build its own highly potent inhibitor. Herein, with the use of kinetic target-guided synthesis, also termed as in situ click chemistry, we describe the discovery of two highly potent and selective cyclooxygenase-2 isozyme inhibitors. The in vivo anti-inflammatory activity of these two novel small molecules is significantly higher than that of widely used selective cyclooxygenase-2 inhibitors.
              • Record: found
              • Abstract: found
              • Article: not found

              Superior thermal conductivity of single-layer graphene.

              We report the measurement of the thermal conductivity of a suspended single-layer graphene. The room temperature values of the thermal conductivity in the range approximately (4.84+/-0.44)x10(3) to (5.30+/-0.48)x10(3) W/mK were extracted for a single-layer graphene from the dependence of the Raman G peak frequency on the excitation laser power and independently measured G peak temperature coefficient. The extremely high value of the thermal conductivity suggests that graphene can outperform carbon nanotubes in heat conduction. The superb thermal conduction property of graphene is beneficial for the proposed electronic applications and establishes graphene as an excellent material for thermal management.

                Author and article information

                Contributors
                Journal
                EESNBY
                Energy & Environmental Science
                Energy Environ. Sci.
                Royal Society of Chemistry (RSC)
                1754-5692
                1754-5706
                December 16 2020
                2020
                : 13
                : 12
                : 4498-4535
                Affiliations
                [1 ]Institute of Advanced Materials
                [2 ]Beijing Normal University
                [3 ]Beijing
                [4 ]P. R. China
                [5 ]Beijing Advanced Innovation Center for Materials Genome Engineering
                [6 ]Beijing Key Laboratory of Function Materials for Molecule & Structure Construction
                [7 ]School of Materials Science and Engineering
                [8 ]University of Science and Technology Beijing
                [9 ]School of Chemistry, Biology and Materials Engineering
                [10 ]Suzhou University of Science and Technology
                [11 ]Suzhou 215009
                Article
                10.1039/D0EE01355B
                563ec77d-921b-41fb-827f-d67d9d61a79f
                © 2020

                http://rsc.li/journals-terms-of-use

                History

                Comments

                Comment on this article

                Related Documents Log