Blog
About

13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Aggregates of IVIG or Avastin, but not HSA, modify the response to model innate immune response modulating impurities

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Therapeutic proteins can induce immune responses that affect their safety and efficacy. Product aggregates and innate immune response modulating impurities (IIRMI) are risk factors of product immunogenicity. In this study, we use Intravenous Immunoglobulin (IVIG), Avastin, and Human Serum Albumin (HSA) to explore whether increased aggregates activate innate immune cells or modify the response to IIRMI. We show that increased aggregates (shaken or stirred) in IVIG and Avastin, but not HSA, induced activation of MAPKs (pp38, pERK and pJNK) and transcription of immune-related genes including IL8, IL6, IL1β, CSF1, CCL2, CCL7, CCL3, CCL24, CXCL2, IRAK1, EGR2, CEBPβ, PPARg and TNFSF15 in human PBMC. The immunomodulatory effect was primarily mediated by FcγR, but not by TLR. Interestingly, increased aggregates in IVIG or Avastin magnified innate immune responses to TLR2/4 agonists, but diminished responses to TLR3/9 agonists. This study shows that IIRMI and aggregates can modify the activity of immune cells potentially modifying the milieu where the products are delivered highlighting the complex interplay of different impurities on product immunogenicity risk. Further, we show that aggregates could modify the sensitivity of PBMC-based assays designed to detect IIRMI. Understanding and managing immunogenicity risk is a critical component of product development and regulation.

          Related collections

          Most cited references 74

          • Record: found
          • Abstract: found
          • Article: not found

          Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.

           K Livak,  T Schmittgen (2001)
          The two most commonly used methods to analyze data from real-time, quantitative PCR experiments are absolute quantification and relative quantification. Absolute quantification determines the input copy number, usually by relating the PCR signal to a standard curve. Relative quantification relates the PCR signal of the target transcript in a treatment group to that of another sample such as an untreated control. The 2(-Delta Delta C(T)) method is a convenient way to analyze the relative changes in gene expression from real-time quantitative PCR experiments. The purpose of this report is to present the derivation, assumptions, and applications of the 2(-Delta Delta C(T)) method. In addition, we present the derivation and applications of two variations of the 2(-Delta Delta C(T)) method that may be useful in the analysis of real-time, quantitative PCR data. Copyright 2001 Elsevier Science (USA).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes.

            Mononuclear phagocytes are versatile cells that can express different functional programs in response to microenvironmental signals. Fully polarized M1 and M2 (or alternatively activated) macrophages are the extremes of a continuum of functional states. Macrophages that infiltrate tumor tissues are driven by tumor-derived and T cell-derived cytokines to acquire a polarized M2 phenotype. These functionally polarized cells, and similarly oriented or immature dendritic cells present in tumors, have a key role in subversion of adaptive immunity and in inflammatory circuits that promote tumor growth and progression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fcgamma receptors as regulators of immune responses.

              In addition to their role in binding antigen, antibodies can regulate immune responses through interacting with Fc receptors (FcRs). In recent years, significant progress has been made in understanding the mechanisms that regulate the activity of IgG antibodies in vivo. In this Review, we discuss recent studies addressing the multifaceted roles of FcRs for IgG (FcgammaRs) in the immune system and how this knowledge could be translated into novel therapeutic strategies to treat human autoimmune, infectious or malignant diseases.
                Bookmark

                Author and article information

                Contributors
                daniela.verthelyi@fda.hhs.gov
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                31 July 2018
                31 July 2018
                2018
                : 8
                Affiliations
                ISNI 0000 0001 2154 2448, GRID grid.483500.a, Division of Biotechnology Review and Research-III, , Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, ; Silver Spring, MD 20993 USA
                Article
                29850
                10.1038/s41598-018-29850-4
                6068171
                30065306
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Uncategorized

                Comments

                Comment on this article