24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Global functional diversity of freshwater fish is concentrated in the Neotropics while functional vulnerability is widespread

      research-article
      a , 1 , 1 , 1 , 2
      Scientific Reports
      Nature Publishing Group

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Worldwide biodiversity assessments have mainly focused on species richness but little is known about the diversity of species roles, i.e. functional diversity, while this is a key facet to understanding the consequences of global changes on the ecosystem services to human societies. Here, we report the world pattern of functional diversity of freshwater fish using a database encompassing morphological characteristics of more than 9,000 species. The Neotropical realm hosts more than 75% of global functional diversity while other realms each host less than 25%. This discrepancy is mediated by high functional uniqueness in some diversified Neotropical fish orders. Surprisingly, functional diversity patterns were weakly related to functional vulnerability. In the Neotropics the loss of threatened species will cause a limited loss of functional diversity (<10%) whereas in the Nearctic and Palearctic realms, decline of the functional diversity will reach 43% and 33%, respectively, conferring a high functional vulnerability to these realms. Conservation of the Neotropical fish diversity is a key target to maintain world fish functional diversity, but this should not hide the pressing need to conserve the vulnerable fish faunas of the rest of the world, in which functional diversity is to a large extent supported by threatened species.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          New multidimensional functional diversity indices for a multifaceted framework in functional ecology.

          Functional diversity is increasingly identified as an important driver of ecosystem functioning. Various indices have been proposed to measure the functional diversity of a community, but there is still no consensus on which are most suitable. Indeed, none of the existing indices meets all the criteria required for general use. The main criteria are that they must be designed to deal with several traits, take into account abundances, and measure all the facets of functional diversity. Here we propose three indices to quantify each facet of functional diversity for a community with species distributed in a multidimensional functional space: functional richness (volume of the functional space occupied by the community), functional evenness (regularity of the distribution of abundance in this volume), and functional divergence (divergence in the distribution of abundance in this volume). Functional richness is estimated using the existing convex hull volume index. The new functional evenness index is based on the minimum spanning tree which links all the species in the multidimensional functional space. Then this new index quantifies the regularity with which species abundances are distributed along the spanning tree. Functional divergence is measured using a novel index which quantifies how species diverge in their distances (weighted by their abundance) from the center of gravity in the functional space. We show that none of the indices meets all the criteria required for a functional diversity index, but instead we show that the set of three complementary indices meets these criteria. Through simulations of artificial data sets, we demonstrate that functional divergence and functional evenness are independent of species richness and that the three functional diversity indices are independent of each other. Overall, our study suggests that decomposition of functional diversity into its three primary components provides a meaningful framework for its quantification and for the classification of existing functional diversity indices. This decomposition has the potential to shed light on the role of biodiversity on ecosystem functioning and on the influence of biotic and abiotic filters on the structure of species communities. Finally, we propose a general framework for applying these three functional diversity indices.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Incorporating plant functional diversity effects in ecosystem service assessments.

            Global environmental change affects the sustained provision of a wide set of ecosystem services. Although the delivery of ecosystem services is strongly affected by abiotic drivers and direct land use effects, it is also modulated by the functional diversity of biological communities (the value, range, and relative abundance of functional traits in a given ecosystem). The focus of this article is on integrating the different possible mechanisms by which functional diversity affects ecosystem properties that are directly relevant to ecosystem services. We propose a systematic way for progressing in understanding how land cover change affects these ecosystem properties through functional diversity modifications. Models on links between ecosystem properties and the local mean, range, and distribution of plant trait values are numerous, but they have been scattered in the literature, with varying degrees of empirical support and varying functional diversity components analyzed. Here we articulate these different components in a single conceptual and methodological framework that allows testing them in combination. We illustrate our approach with examples from the literature and apply the proposed framework to a grassland system in the central French Alps in which functional diversity, by responding to land use change, alters the provision of ecosystem services important to local stakeholders. We claim that our framework contributes to opening a new area of research at the interface of land change science and fundamental ecology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A trait-based test for habitat filtering: convex hull volume.

              Community assembly theory suggests that two processes affect the distribution of trait values within communities: competition and habitat filtering. Within a local community, competition leads to ecological differentiation of coexisting species, while habitat filtering reduces the spread of trait values, reflecting shared ecological tolerances. Many statistical tests for the effects of competition exist in the literature, but measures of habitat filtering are less well-developed. Here, we present convex hull volume, a construct from computational geometry, which provides an n-dimensional measure of the volume of trait space occupied by species in a community. Combined with ecological null models, this measure offers a useful test for habitat filtering. We use convex hull volume and a null model to analyze California woody-plant trait and community data. Our results show that observed plant communities occupy less trait space than expected from random assembly, a result consistent with habitat filtering.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                16 March 2016
                2016
                : 6
                : 22125
                Affiliations
                [1 ]CNRS, UPS, ENFA, UMR 5174 EDB (Laboratoire Évolution et Diversité Biologique), Université Paul Sabatier , 118 route de Narbonne, F-31062 Toulouse, France
                [2 ]Laboratoire Biodiversité Marine et ses Usages (MARBEC) , UMR 9190 CNRS-UM-IFREMER-IRD, Université de Montpellier, CC 093, F-34095 Montpellier Cedex 5, France
                Author notes
                [*]

                These authors jointly supervised this work.

                Article
                srep22125
                10.1038/srep22125
                4793233
                26980070
                5651e99e-0fae-42a7-9526-f7879dc9bee8
                Copyright © 2016, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 19 October 2015
                : 05 February 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article