18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Statistical properties of interval mapping methods on quantitative trait loci location: impact on QTL/eQTL analyses

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Quantitative trait loci (QTL) detection on a huge amount of phenotypes, like eQTL detection on transcriptomic data, can be dramatically impaired by the statistical properties of interval mapping methods. One of these major outcomes is the high number of QTL detected at marker locations. The present study aims at identifying and specifying the sources of this bias, in particular in the case of analysis of data issued from outbred populations. Analytical developments were carried out in a backcross situation in order to specify the bias and to propose an algorithm to control it. The outbred population context was studied through simulated data sets in a wide range of situations.

          The likelihood ratio test was firstly analyzed under the "one QTL" hypothesis in a backcross population. Designs of sib families were then simulated and analyzed using the QTL Map software. On the basis of the theoretical results in backcross, parameters such as the population size, the density of the genetic map, the QTL effect and the true location of the QTL, were taken into account under the "no QTL" and the "one QTL" hypotheses. A combination of two non parametric tests - the Kolmogorov-Smirnov test and the Mann-Whitney-Wilcoxon test - was used in order to identify the parameters that affected the bias and to specify how much they influenced the estimation of QTL location.

          Results

          A theoretical expression of the bias of the estimated QTL location was obtained for a backcross type population. We demonstrated a common source of bias under the "no QTL" and the "one QTL" hypotheses and qualified the possible influence of several parameters. Simulation studies confirmed that the bias exists in outbred populations under both the hypotheses of "no QTL" and "one QTL" on a linkage group. The QTL location was systematically closer to marker locations than expected, particularly in the case of low QTL effect, small population size or low density of markers, i.e. designs with low power. Practical recommendations for experimental designs for QTL detection in outbred populations are given on the basis of this bias quantification. Furthermore, an original algorithm is proposed to adjust the location of a QTL, obtained with interval mapping, which co located with a marker.

          Conclusions

          Therefore, one should be attentive when one QTL is mapped at the location of one marker, especially under low power conditions.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: not found

          Genetic dissection of transcriptional regulation in budding yeast.

          To begin to understand the genetic architecture of natural variation in gene expression, we carried out genetic linkage analysis of genomewide expression patterns in a cross between a laboratory strain and a wild strain of Saccharomyces cerevisiae. Over 1500 genes were differentially expressed between the parent strains. Expression levels of 570 genes were linked to one or more different loci, with most expression levels showing complex inheritance patterns. The loci detected by linkage fell largely into two categories: cis-acting modulators of single genes and trans-acting modulators of many genes. We found eight such trans-acting loci, each affecting the expression of a group of 7 to 94 genes of related function.
            • Record: found
            • Abstract: found
            • Article: not found

            Genetics of gene expression surveyed in maize, mouse and man.

            Treating messenger RNA transcript abundances as quantitative traits and mapping gene expression quantitative trait loci for these traits has been pursued in gene-specific ways. Transcript abundances often serve as a surrogate for classical quantitative traits in that the levels of expression are significantly correlated with the classical traits across members of a segregating population. The correlation structure between transcript abundances and classical traits has been used to identify susceptibility loci for complex diseases such as diabetes and allergic asthma. One study recently completed the first comprehensive dissection of transcriptional regulation in budding yeast, giving a detailed glimpse of a genome-wide survey of the genetics of gene expression. Unlike classical quantitative traits, which often represent gross clinical measurements that may be far removed from the biological processes giving rise to them, the genetic linkages associated with transcript abundance affords a closer look at cellular biochemical processes. Here we describe comprehensive genetic screens of mouse, plant and human transcriptomes by considering gene expression values as quantitative traits. We identify a gene expression pattern strongly associated with obesity in a murine cross, and observe two distinct obesity subtypes. Furthermore, we find that these obesity subtypes are under the control of different loci.
              • Record: found
              • Abstract: found
              • Article: not found

              Mapping mendelian factors underlying quantitative traits using RFLP linkage maps.

              The advent of complete genetic linkage maps consisting of codominant DNA markers [typically restriction fragment length polymorphisms (RFLPs)] has stimulated interest in the systematic genetic dissection of discrete Mendelian factors underlying quantitative traits in experimental organisms. We describe here a set of analytical methods that modify and extend the classical theory for mapping such quantitative trait loci (QTLs). These include: (i) a method of identifying promising crosses for QTL mapping by exploiting a classical formula of SEWALL WRIGHT; (ii) a method (interval mapping) for exploiting the full power of RFLP linkage maps by adapting the approach of LOD score analysis used in human genetics, to obtain accurate estimates of the genetic location and phenotypic effect of QTLs; and (iii) a method (selective genotyping) that allows a substantial reduction in the number of progeny that need to be scored with the DNA markers. In addition to the exposition of the methods, explicit graphs are provided that allow experimental geneticists to estimate, in any particular case, the number of progeny required to map QTLs underlying a quantitative trait.

                Author and article information

                Journal
                BMC Genet
                BMC Genet
                BMC Genetics
                BioMed Central
                1471-2156
                2012
                20 April 2012
                : 13
                : 29
                Affiliations
                [1 ]INRA, UMR 1348, PEGASE, 35042 Rennes cedex, France
                [2 ]Agrocampus Ouest, UMR 1348, PEGASE, 35042 Rennes cedex, France
                [3 ]INRA, UMR 1313, GABI, 78352 Jouy en Josas cedex, France
                [4 ]INRA, UMR 444, LGC, 31326 Castanet Tolosan cedex, France
                [5 ]INRA, UMR 631, SAGA, 31326 Castanet Tolosan cedex, France
                Article
                1471-2156-13-29
                10.1186/1471-2156-13-29
                3386024
                22520935
                5653f5ae-f780-4dbb-bf20-7d5aa28e3482
                Copyright ©2012 Wang et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 18 September 2011
                : 20 April 2012
                Categories
                Methodology Article

                Genetics
                qtl location,qtl,bias,linkage analysis
                Genetics
                qtl location, qtl, bias, linkage analysis

                Comments

                Comment on this article

                Related Documents Log