+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found

      Up-Regulation of Vasopressin mRNA in Paraventricular Hypophysiotrophic Neurons after Acute Immobilization Stress

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Cellular levels of vasopressin (VP) and corticotropin-releasing factor (CRF) mRNAs were determined in the rat hypothalamic paraventricular nucleus after acute immobilization stress. Messenger RNA levels were measured by in situ hybridization histochemistry using <sup>35</sup>S-labeled synthetic DNA oligonucleotide probes and quantitative autoradiography. Analysis of histograms related to density values revealed that two hours after immobilization the average cellular VP and CRF mRNA levels were significantly increased (145 ± 30.3 and 68 ± 21.3%, respectively, above control values). Moreover, the number of VP-expressing parvicellular neurons was doubled in stressed rats relative to controls. These results indicate that single acute immobilization stress is sufficient to up-regulate VP as well as CRF mRNA production in the hypothalamic CRF-neurosecretory system.

          Related collections

          Author and article information

          S. Karger AG
          08 April 2008
          : 58
          : 6
          : 625-629
          aDepartment of Morphology, University of Geneva Medical School, and bDepartment of Psychiatry, IUPG, Geneva, Switzerland; cInstitute of Experimental Endocrinology, Slovak Academiy of Sciences, Bratislava, Slovakia; dFirst Department of Anatomy, Semmelweis University Medical School, Budapest,Hungary
          126602 Neuroendocrinology 1993;58:625–629
          © 1993 S. Karger AG, Basel

          Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

          Page count
          Pages: 5
          Regulation of Hypothalamic Neurons


          Comment on this article