2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Discrete Quaternion Quadratic Phase Fourier Transform

      Preprint

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A novel addition to the family of integral transforms, the quadratic phase Fourier transform (QPFT) embodies a variety of signal processing tools, including the Fourier transform (FT), fractional Fourier transform (FRFT), linear canonical transform (LCT), and special affine Fourier transforms. Due to its additional degrees of freedom, QPFT performs better in applications than other time-frequency analysis methods. Recently, quaternion quadratic phase Fourier (QQPFT), an extension of the QPFT in quaternion algebra, has been derived and since received noticeable attention because of its expressiveness and grace in the analysis of multidimensional quaternion-valued signals and visuals. To the best of our knowledge, the discrete form of the QQPFT is undefined, making it impossible to compute the QQPFT using digital techniques at this time. It initiated us to introduce the two-dimensional (2D) discrete quaternion quadratic phase Fourier (DQQPFT) that is analogous to the 2D discrete quaternion Fourier transform (DQFT). Some fundamental properties including Modulation, the reconstruction formula and the Plancherel theorem of the 2D DQQPFT are obtained. Crucially, the fast computation algorithm and convolution theorem of 2D DQQPFT which are essential for engineering applications are also taken into account. Finally, we present an application of the DQQPFT to study the two-dimensional discrete linear time-varying systems.

          Related collections

          Author and article information

          Journal
          17 February 2024
          Article
          2402.11311
          565c69d5-eed1-4195-a1f3-98ded6f8a1dc

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          6E30, 94A20, 42C40
          19 pages
          math.FA

          Functional analysis
          Functional analysis

          Comments

          Comment on this article

          Related Documents Log