48
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evaluation of the toxicity and repellence of an organic fatty acids mixture (C8910) against insecticide susceptible and resistant strains of the major malaria vector Anopheles funestus Giles (Diptera: Culicidae)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Malaria vector control relies principally on the use of insecticides, especially pyrethroids. Because of the increasing occurrence of insecticide resistance in target vector populations, the development of new insecticides, particularly those with novel modes of action, is particularly important, especially in terms of managing insecticide resistance. The C8910 formulation is a patented mixture of compounds comprising straight-chain octanoic, nonanoic and decanoic saturated fatty acids. This compound has demonstrated toxic and repellent effects against several arthropod species. The aims of this study were to measure the insecticidal effects of C8910 against an insecticide susceptible (FANG) and a pyrethroid resistant (FUMOZ-R) laboratory strain of An. funestus as well as against wild-caught An. funestus material from Zambia (ZamF), and to investigate the repellent effects of two formulations of C8910 against these strains.

          Methods

          Toxicity against adult females was assessed using a range of concentrations based on the CDC bottle bioassay method and repellence of three different C8910 formulations was assessed using standard choice-chamber bioassays.

          Results

          C8910 proved equally toxic to adult females of the FUMOZ-R and FANG laboratory strains, as well as to adult females of the wild-caught (ZamF) sample. None of the C8910 formulations tested gave any conclusive indication of repellence against any of the strains.

          Conclusion

          C8910 is equally effective as an adulticide against pyrethroid resistant and insecticide susceptible An. funestus. However, the formulations tested did not show any consistent repellence against laboratory reared and wild-caught female samples of this species. Nevertheless, C8910 shows potential as an adulticide that can be used for malaria vector control, particularly in those instances where insecticide resistance management is required.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The dominant Anopheles vectors of human malaria in Africa, Europe and the Middle East: occurrence data, distribution maps and bionomic précis

          Background This is the second in a series of three articles documenting the geographical distribution of 41 dominant vector species (DVS) of human malaria. The first paper addressed the DVS of the Americas and the third will consider those of the Asian Pacific Region. Here, the DVS of Africa, Europe and the Middle East are discussed. The continent of Africa experiences the bulk of the global malaria burden due in part to the presence of the An. gambiae complex. Anopheles gambiae is one of four DVS within the An. gambiae complex, the others being An. arabiensis and the coastal An. merus and An. melas. There are a further three, highly anthropophilic DVS in Africa, An. funestus, An. moucheti and An. nili. Conversely, across Europe and the Middle East, malaria transmission is low and frequently absent, despite the presence of six DVS. To help control malaria in Africa and the Middle East, or to identify the risk of its re-emergence in Europe, the contemporary distribution and bionomics of the relevant DVS are needed. Results A contemporary database of occurrence data, compiled from the formal literature and other relevant resources, resulted in the collation of information for seven DVS from 44 countries in Africa containing 4234 geo-referenced, independent sites. In Europe and the Middle East, six DVS were identified from 2784 geo-referenced sites across 49 countries. These occurrence data were combined with expert opinion ranges and a suite of environmental and climatic variables of relevance to anopheline ecology to produce predictive distribution maps using the Boosted Regression Tree (BRT) method. Conclusions The predicted geographic extent for the following DVS (or species/suspected species complex*) is provided for Africa: Anopheles (Cellia) arabiensis, An. (Cel.) funestus*, An. (Cel.) gambiae, An. (Cel.) melas, An. (Cel.) merus, An. (Cel.) moucheti and An. (Cel.) nili*, and in the European and Middle Eastern Region: An. (Anopheles) atroparvus, An. (Ano.) labranchiae, An. (Ano.) messeae, An. (Ano.) sacharovi, An. (Cel.) sergentii and An. (Cel.) superpictus*. These maps are presented alongside a bionomics summary for each species relevant to its control.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Impact of environment on mosquito response to pyrethroid insecticides: facts, evidences and prospects.

            By transmitting major human diseases such as malaria, dengue fever and filariasis, mosquito species represent a serious threat worldwide in terms of public health, and pose a significant economic burden for the African continent and developing tropical regions. Most vector control programmes aiming at controlling life-threatening mosquitoes rely on the use of chemical insecticides, mainly belonging to the pyrethroid class. However, resistance of mosquito populations to pyrethroids is increasing at a dramatic rate, threatening the efficacy of control programmes throughout insecticide-treated areas, where mosquito-borne diseases are still prevalent. In the absence of new insecticides and efficient alternative vector control methods, resistance management strategies are therefore critical, but these require a deep understanding of adaptive mechanisms underlying resistance. Although insecticide resistance mechanisms are intensively studied in mosquitoes, such adaptation is often considered as the unique result of the selection pressure caused by insecticides used for vector control. Indeed, additional environmental parameters, such as insecticides/pesticides usage in agriculture, the presence of anthropogenic or natural xenobiotics, and biotic interactions between vectors and other organisms, may affect both the overall mosquito responses to pyrethroids and the selection of resistance mechanisms. In this context, the present work aims at updating current knowledge on pyrethroid resistance mechanisms in mosquitoes and compiling available data, often from different research fields, on the impact of the environment on mosquito response to pyrethroids. Key environmental factors, such as the presence of urban or agricultural pollutants and biotic interactions between mosquitoes and their microbiome are discussed, and research perspectives to fill in knowledge gaps are suggested. Copyright © 2012 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Anopheles funestus resistant to pyrethroid insecticides in South Africa.

              Northern Kwazulu/Natal (KZN) Province of South Africa borders on southern Mozambique, between Swaziland and the Indian Ocean. To control malaria vectors in KZN, houses were sprayed annually with residual DDT 2 g/ m2 until 1996 when the treatment changed to deltamethrin 20-25 mg/m2. At Ndumu (27 degrees 02'S, 32 degrees 19'E) the recorded malaria incidence increased more than six-fold between 1995 and 1999. Entomological surveys during late 1999 found mosquitoes of the Anopheles funestus group (Diptera: Culicidae) resting in sprayed houses in some sectors of Ndumu area. This very endophilic-vector of malaria had been eliminated from South Africa by DDT spraying in the 1950s, leaving the less endophilic An. arabiensis Patton as the only vector of known importance in KZN. Deltamethrin-sprayed houses at Ndumu were checked for insecticide efficacy by bioassay using susceptible An. arabiensis (laboratory-reared) that demonstrated 100% mortality. Members of the An. funestus group from Ndumu houses (29 males, 116 females) were identified by the rDNA PCR method and four species were found: 74 An. funestus Giles sensu stricto, 34 An. parensis Gillies, seven An. rivulorum Leeson and one An. leesoni Evans. Among An. funestus s.s. females, 5.4% (4/74) were positive for Plasmodium falciparum by ELISA and PCR tests. To test for pyrethroid resistance, mosquito adults were exposed to permethrin discriminating dosage and mortality scored 24h post-exposure: survival rates of wild-caught healthy males were 5/10 An. funestus, 1/9 An. rivulorum and 0/2 An. parensis; survival rates of laboratory-reared adult progeny from 19 An. funestus females averaged 14% (after 1h exposure to 1% permethrin 25:75cis:trans on papers in WHO test kits) and 27% (after 30 min in a bottle with 25 microg permethrin 40:60cis:trans). Anopheles funestus families showing >20% survival in these two resistance test procedures numbered 5/19 and 12/19, respectively. Progeny from 15 of the families were tested on 4% DDT impregnated papers and gave 100% mortality. Finding these proportions of pyrethroid-resistant An. funestus, associated with a malaria upsurge at Ndumu, has serious implications for malaria vector control operations in southern Africa.
                Bookmark

                Author and article information

                Contributors
                michaels@nicd.ac.za
                Shuneo@nicd.ac.za
                oliverw@nicd.ac.za
                maureenc@nicd.ac.za
                basilb@nicd.ac.za
                Journal
                Parasit Vectors
                Parasit Vectors
                Parasites & Vectors
                BioMed Central (London )
                1756-3305
                12 June 2015
                12 June 2015
                2015
                : 8
                : 321
                Affiliations
                [ ]Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
                [ ]Centre for Opportunistic, Tropical & Hospital Infections, National Institute for Communicable Diseases, Johannesburg, South Africa
                Article
                930
                10.1186/s13071-015-0930-2
                4464997
                26062763
                56696a58-2953-4f4b-840b-72c8efd4d733
                © Samuel et al. 2015

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 14 March 2015
                : 2 June 2015
                Categories
                Research
                Custom metadata
                © The Author(s) 2015

                Parasitology
                anopheles funestus,c8910 toxicity,c8910 repellence,malaria vector control
                Parasitology
                anopheles funestus, c8910 toxicity, c8910 repellence, malaria vector control

                Comments

                Comment on this article