14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Dual-specificity phosphatases: critical regulators with diverse cellular targets

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          DUSPs (dual-specificity phosphatases) are a heterogeneous group of protein phosphatases that can dephosphorylate both phosphotyrosine and phosphoserine/phosphothreonine residues within the one substrate. DUSPs have been implicated as major modulators of critical signalling pathways that are dysregulated in various diseases. DUSPs can be divided into six subgroups on the basis of sequence similarity that include slingshots, PRLs (phosphatases of regenerating liver), Cdc14 phosphatases (Cdc is cell division cycle), PTENs (phosphatase and tensin homologues deleted on chromosome 10), myotubularins, MKPs (mitogen-activated protein kinase phosphatases) and atypical DUSPs. Of these subgroups, a great deal of research has focused on the characterization of the MKPs. As their name suggests, MKPs dephosphorylate MAPK (mitogen-activated protein kinase) proteins ERK (extracellular-signal-regulated kinase), JNK (c-Jun N-terminal kinase) and p38 with specificity distinct from that of individual MKP proteins. Atypical DUSPs are mostly of low-molecular-mass and lack the N-terminal CH2 (Cdc25 homology 2) domain common to MKPs. The discovery of most atypical DUSPs has occurred in the last 6 years, which has initiated a large amount of interest in their role and regulation. In the past, atypical DUSPs have generally been grouped together with the MKPs and characterized for their role in MAPK signalling cascades. Indeed, some have been shown to dephosphorylate MAPKs. The current literature hints at the potential of the atypical DUSPs as important signalling regulators, but is crowded with conflicting reports. The present review provides an overview of the DUSP family before focusing on atypical DUSPs, emerging as a group of proteins with vastly diverse substrate specificity and function.

          Related collections

          Most cited references 157

          • Record: found
          • Abstract: found
          • Article: not found

          Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases.

          TNFalpha is a pleiotropic cytokine that induces either cell proliferation or cell death. Inhibition of NF-kappaB activation increases susceptibility to TNFalpha-induced death, concurrent with sustained JNK activation, an important contributor to the death response. Sustained JNK activation in NF-kappaB-deficient cells was suggested to depend on reactive oxygen species (ROS), but how ROS affect JNK activation was unclear. We now show that TNFalpha-induced ROS, whose accumulation is suppressed by mitochondrial superoxide dismutase, cause oxidation and inhibition of JNK-inactivating phosphatases by converting their catalytic cysteine to sulfenic acid. This results in sustained JNK activation, which is required for cytochrome c release and caspase 3 cleavage, as well as necrotic cell death. Treatment of cells or experimental animals with an antioxidant prevents H(2)O(2) accumulation, JNK phosphatase oxidation, sustained JNK activity, and both forms of cell death. Antioxidant treatment also prevents TNFalpha-mediated fulminant liver failure without affecting liver regeneration.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling.

             Tony Hunter (1995)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The phosphatase Cdc14 triggers mitotic exit by reversal of Cdk-dependent phosphorylation.

              Exit from mitosis requires the inactivation of mitotic cyclin-dependent kinases (CDKs) by an unknown mechanism. We show that the Cdc14 phosphatase triggers mitotic exit by three parallel mechanisms, each of which inhibits Cdk activity. Cdc14 dephosphorylates Sic1, a Cdk inhibitor, and Swi5, a transcription factor for SIC1, and induces degradation of mitotic cyclins, likely by dephosphorylating the activator of mitotic cyclin degradation, Cdh1/Hct1. Feedback between these pathways may lead to precipitous collapse of mitotic CDK activity and help coordinate exit from mitosis.
                Bookmark

                Author and article information

                Journal
                Biochemical Journal
                Portland Press Ltd.
                0264-6021
                1470-8728
                March 15 2009
                February 25 2009
                March 15 2009
                : 418
                : 3
                : 475-489
                Affiliations
                [1 ]Cancer Research Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst 2010, Sydney, NSW, Australia
                [2 ]Centre for Biological Systems Analysis (ZBSA) and Centre for Biological Signalling Studies (BIOSS), Faculty of Biology, Albert-Ludwigs University of Freiburg, 79104 Freiburg, Germany
                Article
                10.1042/BJ20082234
                19228121
                © 2009

                Comments

                Comment on this article