64
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Tar DNA Binding Protein-43 (TDP-43) Associates with Stress Granules: Analysis of Cultured Cells and Pathological Brain Tissue

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tar DNA Binding Protein-43 (TDP-43) is a principle component of inclusions in many cases of frontotemporal lobar degeneration (FTLD-U) and amyotrophic lateral sclerosis (ALS). TDP-43 resides predominantly in the nucleus, but in affected areas of ALS and FTLD-U central nervous system, TDP-43 is aberrantly processed and forms cytoplasmic inclusions. The mechanisms governing TDP-43 inclusion formation are poorly understood. Increasing evidence indicates that TDP-43 regulates mRNA metabolism by interacting with mRNA binding proteins that are known to associate with RNA granules. Here we show that TDP-43 can be induced to form inclusions in cell culture and that most TDP-43 inclusions co-localize with SGs. SGs are cytoplasmic RNA granules that consist of mixed protein - RNA complexes. Under stressful conditions SGs are generated by the reversible aggregation of prion-like proteins, such as TIA-1, to regulate mRNA metabolism and protein translation. We also show that disease-linked mutations in TDP-43 increased TDP-43 inclusion formation in response to stressful stimuli. Biochemical studies demonstrated that the increased TDP-43 inclusion formation is associated with accumulation of TDP-43 detergent insoluble complexes. TDP-43 associates with SG by interacting with SG proteins, such as TIA-1, via direct protein-protein interactions, as well as RNA-dependent interactions. The signaling pathway that regulates SGs formation also modulates TDP-43 inclusion formation. We observed that inclusion formation mediated by WT or mutant TDP-43 can be suppressed by treatment with translational inhibitors that suppress or reverse SG formation. Finally, using Sudan black to quench endogenous autofluorescence, we also demonstrate that TDP-43 positive-inclusions in pathological CNS tissue co-localize with multiple protein markers of stress granules, including TIA-1 and eIF3. These data provide support for accumulating evidence that TDP-43 participates in the SG pathway.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases.

          A range of human degenerative conditions, including Alzheimer's disease, light-chain amyloidosis and the spongiform encephalopathies, is associated with the deposition in tissue of proteinaceous aggregates known as amyloid fibrils or plaques. It has been shown previously that fibrillar aggregates that are closely similar to those associated with clinical amyloidoses can be formed in vitro from proteins not connected with these diseases, including the SH3 domain from bovine phosphatidyl-inositol-3'-kinase and the amino-terminal domain of the Escherichia coli HypF protein. Here we show that species formed early in the aggregation of these non-disease-associated proteins can be inherently highly cytotoxic. This finding provides added evidence that avoidance of protein aggregation is crucial for the preservation of biological function and suggests common features in the origins of this family of protein deposition diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Stress granules: the Tao of RNA triage.

            Cytoplasmic RNA structures such as stress granules (SGs) and processing bodies (PBs) are functional byproducts of mRNA metabolism, sharing substrate mRNA, dynamic properties and many proteins, but also housing separate components and performing independent functions. Each can exist independently, but when coordinately induced they are often tethered together in a cytosolic dance. Although both self-assemble in response to stress-induced perturbations in translation, several recent reports reveal novel proteins and RNAs that are components of these structures but also perform other cellular functions. Proteins that mediate splicing, transcription, adhesion, signaling and development are all integrated with SG and PB assembly. Thus, these ephemeral bodies represent more than just the dynamic sorting of mRNA between translation and decay.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging.

              The long-term health of the cell is inextricably linked to protein quality control. Under optimal conditions this is accomplished by protein homeostasis, a highly complex network of molecular interactions that balances protein biosynthesis, folding, translocation, assembly/disassembly, and clearance. This review will examine the consequences of an imbalance in homeostasis on the flux of misfolded proteins that, if unattended, can result in severe molecular damage to the cell. Adaptation and survival requires the ability to sense damaged proteins and to coordinate the activities of protective stress response pathways and chaperone networks. Yet, despite the abundance and apparent capacity of chaperones and other components of homeostasis to restore folding equilibrium, the cell appears poorly adapted for chronic proteotoxic stress when conformationally challenged aggregation-prone proteins are expressed in cancer, metabolic disease, and neurodegenerative disease. The decline in biosynthetic and repair activities that compromises the integrity of the proteome is influenced strongly by genes that control aging, thus linking stress and protein homeostasis with the health and life span of the organism.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2010
                11 October 2010
                : 5
                : 10
                : e13250
                Affiliations
                [1 ]Department of Pharmacology, Boston University School of Medicine, Boston, Massachusetts, United States of America
                [2 ]Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, United States of America
                [3 ]Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, United States of America
                [4 ]Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
                [5 ]Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
                Mental Health Research Institute of Victoria, Australia
                Author notes

                Conceived and designed the experiments: BW. Performed the experiments: LLY AB TV AC TM NZ. Analyzed the data: LLY MS LP BW. Contributed reagents/materials/analysis tools: LLY YJZ AM RB LP. Wrote the paper: LLY LP BW.

                Article
                10-PONE-RA-19535R1
                10.1371/journal.pone.0013250
                2952586
                20948999
                5684d81f-7691-4302-a538-3c792fcf1d18
                This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.
                History
                : 4 June 2010
                : 8 September 2010
                Page count
                Pages: 15
                Categories
                Research Article
                Biochemistry/Cell Signaling and Trafficking Structures
                Molecular Biology/RNA-Protein Interactions
                Molecular Biology/Translational Regulation
                Neurological Disorders/Movement Disorders

                Uncategorized
                Uncategorized

                Comments

                Comment on this article