261
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Retinitis pigmentosa

      review-article
      1 ,
      Orphanet Journal of Rare Diseases
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Retinitis pigmentosa (RP) is an inherited retinal dystrophy caused by the loss of photoreceptors and characterized by retinal pigment deposits visible on fundus examination. Prevalence of non syndromic RP is approximately 1/4,000. The most common form of RP is a rod-cone dystrophy, in which the first symptom is night blindness, followed by the progressive loss in the peripheral visual field in daylight, and eventually leading to blindness after several decades. Some extreme cases may have a rapid evolution over two decades or a slow progression that never leads to blindness. In some cases, the clinical presentation is a cone-rod dystrophy, in which the decrease in visual acuity predominates over the visual field loss. RP is usually non syndromic but there are also many syndromic forms, the most frequent being Usher syndrome. To date, 45 causative genes/loci have been identified in non syndromic RP (for the autosomal dominant, autosomal recessive, X-linked, and digenic forms). Clinical diagnosis is based on the presence of night blindness and peripheral visual field defects, lesions in the fundus, hypovolted electroretinogram traces, and progressive worsening of these signs. Molecular diagnosis can be made for some genes, but is not usually performed due to the tremendous genetic heterogeneity of the disease. Genetic counseling is always advised. Currently, there is no therapy that stops the evolution of the disease or restores the vision, so the visual prognosis is poor. The therapeutic approach is restricted to slowing down the degenerative process by sunlight protection and vitaminotherapy, treating the complications (cataract and macular edema), and helping patients to cope with the social and psychological impact of blindness. However, new therapeutic strategies are emerging from intensive research (gene therapy, neuroprotection, retinal prosthesis).

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          A novel gene encoding an integral membrane protein is mutated in nephropathic cystinosis.

          Nephropathic cystinosis, an autosomal recessive disorder resulting from defective lysosomal transport of cystine, is the most common inherited cause of renal Fanconi syndrome. The cystinosis gene has been mapped to chromosome 17p13. We found that the locus D17S829 was homozygously deleted in 23 out of 70 patients, and identified a novel gene, CTNS, which mapped to the deletion interval. CTNS encodes an integral membrane protein, cystinosin, with features of a lysosomal membrane protein. Eleven different mutations, all predicted to cause loss of function of the protein, were found to segregate with the disorder.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Gene therapy restores vision in a canine model of childhood blindness.

            The relationship between the neurosensory photoreceptors and the adjacent retinal pigment epithelium (RPE) controls not only normal retinal function, but also the pathogenesis of hereditary retinal degenerations. The molecular bases for both primary photoreceptor and RPE diseases that cause blindness have been identified. Gene therapy has been used successfully to slow degeneration in rodent models of primary photoreceptor diseases, but efficacy of gene therapy directed at photoreceptors and RPE in a large-animal model of human disease has not been reported. Here we study one of the most clinically severe retinal degenerations, Leber congenital amaurosis (LCA). LCA causes near total blindness in infancy and can result from mutations in RPE65 (LCA, type II; MIM 180069 and 204100). A naturally occurring animal model, the RPE65-/- dog, suffers from early and severe visual impairment similar to that seen in human LCA. We used a recombinant adeno-associated virus (AAV) carrying wild-type RPE65 (AAV-RPE65) to test the efficacy of gene therapy in this model. Our results indicate that visual function was restored in this large animal model of childhood blindness.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Digenic retinitis pigmentosa due to mutations at the unlinked peripherin/RDS and ROM1 loci.

              In spite of recent advances in identifying genes causing monogenic human disease, very little is known about the genes involved in polygenic disease. Three families were identified with mutations in the unlinked photoreceptor-specific genes ROM1 and peripherin/RDS, in which only double heterozygotes develop retinitis pigmentosa (RP). These findings indicate that the allelic and nonallelic heterogeneity known to be a feature of monogenic RP is complicated further by interactions between unlinked mutations causing digenic RP. Recognition of the inheritance pattern exemplified by these three families might facilitate the identification of other examples of digenic inheritance in human disease.
                Bookmark

                Author and article information

                Journal
                Orphanet J Rare Dis
                Orphanet Journal of Rare Diseases
                BioMed Central (London )
                1750-1172
                2006
                11 October 2006
                : 1
                : 40
                Affiliations
                [1 ]Inserm U. 583, Physiopathologie et thérapie des déficits sensoriels et moteurs, Institut des Neurosciences de Montpellier, Hôpital Saint-Eloi, BP 74103, 80 av. Augustin Fliche, 34091 Montpellier Cedex 05, France
                Article
                1750-1172-1-40
                10.1186/1750-1172-1-40
                1621055
                17032466
                569c8f11-38ab-441f-a2d8-7178fff1e099
                Copyright © 2006 Hamel; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 18 August 2006
                : 11 October 2006
                Categories
                Review

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article