Miho S. Kitazawa 1 , 2 , * , Koichi Fujimoto 1 , *
7 May 2015
How organisms determine particular organ numbers is a fundamental key to the development of precise body structures; however, the developmental mechanisms underlying organ-number determination are unclear. In many eudicot plants, the primordia of sepals and petals (the floral organs) first arise sequentially at the edge of a circular, undifferentiated region called the floral meristem, and later transition into a concentric arrangement called a whorl, which includes four or five organs. The properties controlling the transition to whorls comprising particular numbers of organs is little explored. We propose a development-based model of floral organ-number determination, improving upon earlier models of plant phyllotaxis that assumed two developmental processes: the sequential initiation of primordia in the least crowded space around the meristem and the constant growth of the tip of the stem. By introducing mutual repulsion among primordia into the growth process, we numerically and analytically show that the whorled arrangement emerges spontaneously from the sequential initiation of primordia. Moreover, by allowing the strength of the inhibition exerted by each primordium to decrease as the primordium ages, we show that pentamerous whorls, in which the angular and radial positions of the primordia are consistent with those observed in sepal and petal primordia in Silene coeli-rosa, Caryophyllaceae, become the dominant arrangement. The organ number within the outmost whorl, corresponding to the sepals, takes a value of four or five in a much wider parameter space than that in which it takes a value of six or seven. These results suggest that mutual repulsion among primordia during growth and a temporal decrease in the strength of the inhibition during initiation are required for the development of the tetramerous and pentamerous whorls common in eudicots.
Why do most eudicot flowers have either four or five petals? This fundamental and attractive problem in botany has been little investigated. Here, we identify the properties responsible for organ-number determination in floral development using mathematical modeling. Earlier experimental and theoretical studies showed that the arrangements of preexisting organs determine where a new organ will arise. Expanding upon those studies, we integrated two interactions between floral organs: (1) spatially and temporally decreased inhibition of new organ initiation by preexisting organs, and (2) mutual repulsion among organs such that they are “pushed around” during floral development. In computer simulations incorporating such initiation inhibition and mutual repulsion, the floral organs spontaneously formed several circles, consistent with the concentric circular arrangement of sepals and petals in eudicot flowers. Each circle tended to contain four or five organs arranged in positions that agreed quantitatively with the organ positions in the pentamerous flower, Silene coeli-rosa, Caryophyllaceae. These results suggest that the temporal decay of initiation inhibition and the mutual repulsion among growing organs determine the particular organ number during eudicot floral development.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited