35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Estimating maximum bite performance in Tyrannosaurus rex using multi-body dynamics.

      Biology letters
      Alligators and Crocodiles, anatomy & histology, physiology, Animals, Biomechanical Phenomena, Bite Force, Body Size, Computer Simulation, Dinosaurs, Feeding Behavior, Jaw, Models, Anatomic, Muscles, Paleontology, methods, Predatory Behavior, Skull, Tooth

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bite mechanics and feeding behaviour in Tyrannosaurus rex are controversial. Some contend that a modest bite mechanically limited T. rex to scavenging, while others argue that high bite forces facilitated a predatory mode of life. We use dynamic musculoskeletal models to simulate maximal biting in T. rex. Models predict that adult T. rex generated sustained bite forces of 35 000-57 000 N at a single posterior tooth, by far the highest bite forces estimated for any terrestrial animal. Scaling analyses suggest that adult T. rex had a strong bite for its body size, and that bite performance increased allometrically during ontogeny. Positive allometry in bite performance during growth may have facilitated an ontogenetic change in feeding behaviour in T. rex, associated with an expansion of prey range in adults to include the largest contemporaneous animals.

          Related collections

          Most cited references11

          • Record: found
          • Abstract: found
          • Article: not found

          Bite forces and evolutionary adaptations to feeding ecology in carnivores.

          The Carnivora spans the largest ecological and body size diversity of any mammalian order, making it an ideal basis for studies of evolutionary ecology and functional morphology. For animals with different feeding ecologies, it may be expected that bite force represents an important evolutionary adaptation, but studies have been constrained by a lack of bite force data. In this study we present predictions of bite forces for 151 species of extant carnivores, comprising representatives from all eight families and the entire size and ecological spectrum within the order. We show that, when normalized for body size, bite forces differ significantly between the various feeding categories. At opposing extremes and independent of genealogy, consumers of tough fibrous plant material and carnivores preying on large prey both have high bite forces for their size, while bite force adjusted for body mass is low among specialized insectivores. Omnivores and carnivores preying on small prey have more moderate bite forces for their size. These findings indicate that differences in bite force represent important adaptations to and indicators of differing feeding ecologies throughout carnivoran evolution. Our results suggest that the incorporation of bite force data may assist in the construction of more robust evolutionary and palaeontological analyses of feeding ecology.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The ontogeny of bite-force performance in American alligator (Alligator mississippiensis)

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A biomechanical model for analysis of muscle force, power output and lower jaw motion in fishes.

              Fish skulls are complex kinetic systems with movable components that are powered by muscles. Cranial muscles for jaw closing pull the mandible around a point of rotation at the jaw joint using a third-order lever mechanism. The present study develops a lever model for the jaw of fishes that uses muscle design and the Hill equation for nonlinear length-tension properties of muscle to calculate dynamic power output. The model uses morphometric data on skeletal dimensions and muscle proportions in order to predict behavior and force transmission mediated by lever action. The computer model calculates a range of dynamic parameters of jaw function including muscle force, torque, effective mechanical advantage, jaw velocity, bite duration, bite force, work and power. A complete list of required morphometrics is presented and a software program (MandibLever 2.0) is available for implementing lever analysis. Results show that simulations yield kinematics and timing profiles similar to actual fish feeding events. Simulation of muscle properties shows that mandibles reach their peak velocity near the start of jaw closing, peak force at the end of jaw closing, and peak power output at about 25% of the closing cycle time. Adductor jaw muscles with different mechanical designs must have different contractile properties and/or different muscle activity patterns to coordinate jaw closing. The effective mechanical advantage calculated by the model is considerably lower than the mechanical advantage estimated from morphological lever ratios, suggesting that previous studies of morphological lever ratios have overestimated force and underestimated velocity transmission to the mandible. A biomechanical model of jaw closing can be used to interpret the mechanics of a wide range of jaw mechanisms and will enable studies of the functional results of developmental and evolutionary changes in skull morphology and physiology.
                Bookmark

                Author and article information

                Comments

                Comment on this article