9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The role of macrophages in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nonalcoholic fatty liver disease (NAFLD) and its inflammatory and often progressive subtype nonalcoholic steatohepatitis (NASH) are becoming the leading cause of liver-related morbidity and mortality worldwide, and a primary indication for liver transplantation. The pathophysiology of NASH is multifactorial and not yet completely understood; however, innate immunity is a major contributing factor in which liver-resident macrophages (Kupffer cells) and recruited macrophages play a central part in disease progression. In this Review, we assess the evidence for macrophage involvement in the development of steatosis, inflammation and fibrosis in NASH. In this process, not only the polarization of liver macrophages towards a pro-inflammatory phenotype is important, but adipose tissue macrophages, especially in the visceral compartment, also contribute to disease severity and insulin resistance. Macrophage activation is mediated by factors such as endotoxins and translocated bacteria owing to increased intestinal permeability, factors released from damaged or lipoapoptotic hepatocytes, as well as alterations in gut microbiota and defined nutritional components, including certain free fatty acids, cholesterol and their metabolites. Reflecting the important role of macrophages in NASH, we also review studies investigating drugs that target macrophage recruitment to the liver, macrophage polarization and their inflammatory effects as potential treatment options for patients with NASH.

          Related collections

          Most cited references 117

          • Record: found
          • Abstract: found
          • Article: not found

          Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance.

          Obesity and insulin resistance, the cardinal features of metabolic syndrome, are closely associated with a state of low-grade inflammation. In adipose tissue chronic overnutrition leads to macrophage infiltration, resulting in local inflammation that potentiates insulin resistance. For instance, transgenic expression of Mcp1 (also known as chemokine ligand 2, Ccl2) in adipose tissue increases macrophage infiltration, inflammation and insulin resistance. Conversely, disruption of Mcp1 or its receptor Ccr2 impairs migration of macrophages into adipose tissue, thereby lowering adipose tissue inflammation and improving insulin sensitivity. These findings together suggest a correlation between macrophage content in adipose tissue and insulin resistance. However, resident macrophages in tissues display tremendous heterogeneity in their activities and functions, primarily reflecting their local metabolic and immune microenvironment. While Mcp1 directs recruitment of pro-inflammatory classically activated macrophages to sites of tissue damage, resident macrophages, such as those present in the adipose tissue of lean mice, display the alternatively activated phenotype. Despite their higher capacity to repair tissue, the precise role of alternatively activated macrophages in obesity-induced insulin resistance remains unknown. Using mice with macrophage-specific deletion of the peroxisome proliferator activated receptor-gamma (PPARgamma), we show here that PPARgamma is required for maturation of alternatively activated macrophages. Disruption of PPARgamma in myeloid cells impairs alternative macrophage activation, and predisposes these animals to development of diet-induced obesity, insulin resistance, and glucose intolerance. Furthermore, gene expression profiling revealed that downregulation of oxidative phosphorylation gene expression in skeletal muscle and liver leads to decreased insulin sensitivity in these tissues. Together, our findings suggest that resident alternatively activated macrophages have a beneficial role in regulating nutrient homeostasis and suggest that macrophage polarization towards the alternative state might be a useful strategy for treating type 2 diabetes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Alternative M2 activation of Kupffer cells by PPARdelta ameliorates obesity-induced insulin resistance.

            Macrophage infiltration and activation in metabolic tissues underlie obesity-induced insulin resistance and type 2 diabetes. While inflammatory activation of resident hepatic macrophages potentiates insulin resistance, the functions of alternatively activated Kupffer cells in metabolic disease remain unknown. Here we show that in response to the Th2 cytokine interleukin-4 (IL-4), peroxisome proliferator-activated receptor delta (PPARdelta) directs expression of the alternative phenotype in Kupffer cells and adipose tissue macrophages of lean mice. However, adoptive transfer of PPARdelta(-/-) (Ppard(-/-)) bone marrow into wild-type mice diminishes alternative activation of hepatic macrophages, causing hepatic dysfunction and systemic insulin resistance. Suppression of hepatic oxidative metabolism is recapitulated by treatment of primary hepatocytes with conditioned medium from PPARdelta(-/-) macrophages, indicating direct involvement of Kupffer cells in liver lipid metabolism. Taken together, these data suggest an unexpected beneficial role for alternatively activated Kupffer cells in metabolic syndrome and type 2 diabetes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fetuin-A acts as an endogenous ligand of TLR4 to promote lipid-induced insulin resistance.

              Toll-like receptor 4 (TLR4) has a key role in innate immunity by activating an inflammatory signaling pathway. Free fatty acids (FFAs) stimulate adipose tissue inflammation through the TLR4 pathway, resulting in insulin resistance. However, current evidence suggests that FFAs do not directly bind to TLR4, but an endogenous ligand for TLR4 remains to be identified. Here we show that fetuin-A (FetA) could be this endogenous ligand and that it has a crucial role in regulating insulin sensitivity via Tlr4 signaling in mice. FetA (officially known as Ahsg) knockdown in mice with insulin resistance caused by a high-fat diet (HFD) resulted in downregulation of Tlr4-mediated inflammatory signaling in adipose tissue, whereas selective administration of FetA induced inflammatory signaling and insulin resistance. FFA-induced proinflammatory cytokine expression in adipocytes occurred only in the presence of both FetA and Tlr4; removing either of them prevented FFA-induced insulin resistance. We further found that FetA, through its terminal galactoside moiety, directly binds the residues of Leu100-Gly123 and Thr493-Thr516 in Tlr4. FFAs did not produce insulin resistance in adipocytes with mutated Tlr4 or galactoside-cleaved FetA. Taken together, our results suggest that FetA fulfills the requirement of an endogenous ligand for TLR4 through which lipids induce insulin resistance. This may position FetA as a new therapeutic target for managing insulin resistance and type 2 diabetes.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Gastroenterology & Hepatology
                Nat Rev Gastroenterol Hepatol
                Springer Nature
                1759-5045
                1759-5053
                November 27 2018
                Article
                10.1038/s41575-018-0082-x
                30482910
                © 2018

                Comments

                Comment on this article