29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Indoor Air Quality in Inpatient Environments: A Systematic Review on Factors that Influence Chemical Pollution in Inpatient Wards

      review-article
      1 , , 2 , 1
      Journal of Healthcare Engineering
      Hindawi

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          Indoor air quality is one the main issues in which governments are focusing. In healing spaces, several research studies are reporting a growing number of data analysis and research works in order to guarantee and prevent health of users and workers. Currently the main investigations are about biological and physical risks; otherwise chemical ones are less investigated. Several countries are carrying out indoor air quality monitoring in those professional workplaces in which chemicals are used but also in some typically indoor (generic) spaces for the building hygiene assessment. The indoor air is affected by several factors that currently are analyzed punctually, without a whole scenario of all the variable performances. The authors have done a systematic review on the current state of the art and knowledge related to chemical pollution in healing spaces and the emerging strategies, supported by scientific literature, for healthy inpatient rooms and their indoor air.

          Methodology

          The systematic review has been done through the analysis of papers from SCOPUS, DOAJ, and PubMed databases. The survey sample considered 483 scientific articles, between 1989 and 2017, and starting the systematic reading and analysis of the abstracts, only 187 scientific papers were selected, and only 96 were accessible.

          Discussion

          Since scientific literature reports very different outputs and results, the resulting work from the survey is divided into specific fields of interest related to construction and finishing materials, installations, components, ventilation systems, processes, etc. Starting from the systematic reading, the paper classifies the factors of indoor air in four macroareas: outdoor air and microclimatic factors (temperature, relative humidity, air velocity, air change, etc.); management activities (management and maintenance activities, ventilation systems, HVAC, cleaning and disinfectant activities, etc.); design factors (room dimensions, furniture, finishing materials, etc.); and human presence and medical activities (users' presence, their health status, and medical activities carried out in inpatient rooms).

          Conclusion

          The systematic review gives rise to a broad scenario on the existing knowledge regarding the indoor air pollution, design, and management strategies for healthy spaces and several emerging topics. Although the aim of the investigation is strictly related to chemical pollution, several considerations from the biological point of view have been listed. The systematic review, supported by the existing scientific literature, becomes a starting point for considering the importance of the topic and to stimulate the knowledge around this field of interest for improving studies, analysis, and simulations.

          Related collections

          Most cited references133

          • Record: found
          • Abstract: found
          • Article: not found

          Factors involved in the aerosol transmission of infection and control of ventilation in healthcare premises

          Summary The epidemics of severe acute respiratory syndrome (SARS) in 2003 highlighted both short- and long-range transmission routes, i.e. between infected patients and healthcare workers, and between distant locations. With other infections such as tuberculosis, measles and chickenpox, the concept of aerosol transmission is so well accepted that isolation of such patients is the norm. With current concerns about a possible approaching influenza pandemic, the control of transmission via infectious air has become more important. Therefore, the aim of this review is to describe the factors involved in: (1) the generation of an infectious aerosol, (2) the transmission of infectious droplets or droplet nuclei from this aerosol, and (3) the potential for inhalation of such droplets or droplet nuclei by a susceptible host. On this basis, recommendations are made to improve the control of aerosol-transmitted infections in hospitals as well as in the design and construction of future isolation facilities.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The study of antimicrobial activity and preservative effects of nanosilver ingredient

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human exhaled air analytics: biomarkers of diseases.

              Over the last few years, breath analysis for the routine monitoring of metabolic disorders has attracted a considerable amount of scientific interest, especially since breath sampling is a non-invasive technique, totally painless and agreeable to patients. The investigation of human breath samples with various analytical methods has shown a correlation between the concentration patterns of volatile organic compounds (VOCs) and the occurrence of certain diseases. It has been demonstrated that modern analytical instruments allow the determination of many compounds found in human breath both in normal and anomalous concentrations. The composition of exhaled breath in patients with, for example, lung cancer, inflammatory lung disease, hepatic or renal dysfunction and diabetes contains valuable information. Furthermore, the detection and quantification of oxidative stress, and its monitoring during surgery based on composition of exhaled breath, have made considerable progress. This paper gives an overview of the analytical techniques used for sample collection, preconcentration and analysis of human breath composition. The diagnostic potential of different disease-marking substances in human breath for a selection of diseases and the clinical applications of breath analysis are discussed. Copyright 2007 John Wiley & Sons, Ltd.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Healthc Eng
                J Healthc Eng
                JHE
                Journal of Healthcare Engineering
                Hindawi
                2040-2295
                2040-2309
                2019
                27 February 2019
                : 2019
                : 8358306
                Affiliations
                1Department of Architecture, Built Environment and Construction Engineering (dept. ABC), Politecnico di Milano, Via G. Ponzio 31, 20133 Milan, Italy
                2Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
                Author notes

                Academic Editor: Andreas Maier

                Author information
                http://orcid.org/0000-0002-4855-7583
                Article
                10.1155/2019/8358306
                6415317
                30937154
                56c063f5-2bf7-43f0-8d28-ae25b2b6b4da
                Copyright © 2019 Marco Gola et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 11 August 2018
                : 28 November 2018
                : 6 December 2018
                Categories
                Review Article

                Comments

                Comment on this article