73
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Human Neutrophil Peptide-1 (HNP-1): A New Anti-Leishmanial Drug Candidate

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The toxicity of available drugs for treatment of leishmaniasis, coupled with emerging drug resistance, make it urgent to find new therapies. Antimicrobial peptides (AMPs) have a strong broad-spectrum antimicrobial activity with distinctive modes of action and are considered as promising therapeutic agents. The defensins, members of the large family of AMPs, are immunomodulatory molecules and important components of innate immune system. Human neutrophil peptide-1 (HNP-1), which is produced by neutrophils, is one of the most potent defensins. In this study, we described anti-parasitic activity of recombinant HNP-1 (rHNP-1) against Leishmania major promastigotes and amastigotes. Furthermore, we evaluated the immunomodulatory effect of rHNP-1 on parasite-infected neutrophils and how neutrophil apoptosis was affected. Our result showed that neutrophils isolated from healthy individuals were significantly delayed in the onset of apoptosis following rHNP-1 treatment. Moreover, there was a noteworthy increase in dying cells in rHNP-1- and/or CpG–treated neutrophils in comparison with untreated cells. There is a considerable increase in TNF-α production from rHNP-1-treated neutrophils and decreased level of TGF-β concentration, a response that should potentiate the immune system against parasite invasion. In addition, by using real-time polymerase chain reaction (real-time PCR), we showed that in vitro infectivity of Leishmania into neutrophils is significantly reduced following rHNP-1 treatment compared to untreated cells.

          Author Summary

          In Iran, cutaneous leishmaniasis (CL) is a widespread and highly endemic disease in young individuals. To date, treatment strategy is based on chemotherapy accompanied with high incidence of toxicity and drug resistance. Distinctive mode of action of defensins (members of antimicrobial peptides) with low susceptibility to resistance and low toxicity to mammalian cells makes them suitable candidates for anti-leishmanial agents. The most active human defensin is human neutrophil peptide-1 (HNP-1) produced by neutrophils; the first effector cells during Leishmania infection. In this work, we used recombinant HNP-1 (rHNP-1) against both the promastigote and amastigote forms of Leishmania (L.) major. Furthermore, immunomodulatory effect of rHNP-1 on Leishmania-infected neutrophils was investigated. Our result showed that rHNP-1 has anti-parasitic effect against L. major promastigotes and amastigotes and also reduces infectivity rate of Leishmania-infected neutrophils. Moreover, assessment of cytokine production from Leishmania-infected neutrophils reveals an increase in TNF-α and a decrease in TGF-β production after rHNP-1 treatment; a cytokine pattern anticipated to facilitate control of parasites. The immunomodulatory effect of rHNP-1 on cytokine production from parasite-infected neutrophils besides its direct effect on free parasites is considered as promising step towards developing new anti-leishmanial agents.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Cutting edge: neutrophil granulocyte serves as a vector for Leishmania entry into macrophages.

          Macrophages (MF) are the final host cells for multiplication of the intracellular parasite Leishmania major (L. major). However, polymorphonuclear neutrophil granulocytes (PMN), not MF, are the first leukocytes that migrate to the site of infection and encounter the parasites. Our previous studies indicated that PMN phagocytose but do not kill L. major. Upon infection with Leishmania, apoptosis of human PMN is delayed and takes 2 days to occur. Infected PMN were found to secrete high levels of the chemokine MIP-1beta, which attracts MF. In this study, we investigated whether MF can ingest parasite-infected PMN. We observed that MF readily phagocytosed infected apoptotic PMN. Leishmania internalized by this indirect way survived and multiplied in MF. Moreover, ingestion of apoptotic infected PMN resulted in release of the anti-inflammatory cytokine TGF-beta by MF. These data indicate that Leishmania can misuse granulocytes as a "Trojan horse" to enter their final host cells "silently" and unrecognized.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neutrophil granulocytes--Trojan horses for Leishmania major and other intracellular microbes?

            Polymorphonuclear neutrophil granulocytes (PMNs) possess numerous effector mechanisms to kill ingested pathogens as the first line of defence. However, several microorganisms evade intracellular killing in neutrophils, survive and retain infectivity. There is increasing evidence that several pathogens even multiply within neutrophils. Taking Leishmania major as a prototypic intracellular pathogen, we suggest an evasion strategy that includes the manipulation of PMNs in such a way that the pathogens are able to use the granulocytes as host cells. The ability to survive and maintain infectivity in PMNs subsequently enables these organisms to establish productive infection. These organisms can use granulocytes as Trojan horses before they enter their definitive host cells, the macrophages.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human defensins.

              Antimicrobial peptides are small, cationic, amphiphilic peptides of 12-50 amino acids with microbicidal activity against both bacteria and fungi. The eukaryotic antimicrobial peptides may be divided into four distinct groups according to their structural features: cysteine-free alpha-helices, extended cysteine-free alpha-helices with a predominance of one or two amino acids, loop structures with one intramolecular disulfide bond, and beta-sheet structures which are stabilised by two or three intramolecular disulfide bonds. Mammalian defensins are part of the last-mentioned group. The mammalian defensins can be subdivided into three main classes according to their structural differences: the alpha-defensins, beta-defensins and the recently described theta-defensins. Mammalian alpha-defensins are predominantly found in neutrophils and in small intestinal Paneth cells, whereas mammalian beta-defensins have been isolated from both leukocytes and epithelial cells. Recently, two novel human beta-defensins, human beta-defensin-3 (HBD-3), and human beta-defensin-4 (HBD-4) have been discovered. Similar to HBD-1 and HBD-2, HBD-3 has microbicidal activity towards the Gram-negative bacteria (Pseudomonas aeruginosa, Escherichia coli) and the yeasts Candida albicans and Malassezia furfur. In addition, HBD-3 kills Gram-positive bacteria such as Streptococcus pyogenes or Staphylococcus aureus, including multi-resistant S. aureus strains, and even vancomycin-resistant Enterococcus faecium. In contrast to HBD-1 and HBD-2, significant expression of HBD-3 has been demonstrated in non-epithelial tissues, such as leukocytes, heart and skeletal muscle. HBD-4 is expressed in certain epithelia and in neutrophils. Its bactericidal activity against P. aeruginosa is stronger than that of the other known beta-defensins. Here we present an overview of human antimicrobial peptides with some emphasis on their antifungal properties.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Negl Trop Dis
                PLoS Negl Trop Dis
                plos
                plosntds
                PLoS Neglected Tropical Diseases
                Public Library of Science (San Francisco, USA )
                1935-2727
                1935-2735
                October 2013
                17 October 2013
                : 7
                : 10
                : e2491
                Affiliations
                [1 ]Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
                [2 ]Virology Department, Pasteur Institute of Iran, Tehran, Iran
                [3 ]Biochemistry Department, Pasteur Institute of Iran, Tehran, Iran
                [4 ]Department of Microbiology Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
                Queensland Institute of Medical Research, Australia
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: SR. Performed the experiments: SD YT FZ EG FD MM. Analyzed the data: SD SK KA SN SR. Contributed reagents/materials/analysis tools: SK KA SN SR. Wrote the paper: SD SN SR.

                Article
                PNTD-D-13-00748
                10.1371/journal.pntd.0002491
                3798388
                24147170
                56c4a9ad-df5d-49d6-9703-1de1fcc4d46d
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 28 May 2013
                : 8 September 2013
                Page count
                Pages: 12
                Funding
                SD would like to thank Pasteur Institute of Iran for supporting her PhD studentship. This work was supported by Pasteur Institute of Iran and Iran Ministry of Health. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article