+1 Recommend
0 collections
      • Record: found
      • Abstract: not found
      • Article: not found

      UCSF Chimera?A visualization system for exploratory research and analysis

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          The design, implementation, and capabilities of an extensible visualization system, UCSF Chimera, are discussed. Chimera is segmented into a core that provides basic services and visualization, and extensions that provide most higher level functionality. This architecture ensures that the extension mechanism satisfies the demands of outside developers who wish to incorporate new features. Two unusual extensions are presented: Multiscale, which adds the ability to visualize large-scale molecular assemblies such as viral coats, and Collaboratory, which allows researchers to share a Chimera session interactively despite being at separate locales. Other extensions include Multalign Viewer, for showing multiple sequence alignments and associated structures; ViewDock, for screening docked ligand orientations; Movie, for replaying molecular dynamics trajectories; and Volume Viewer, for display and analysis of volumetric data. A discussion of the usage of Chimera in real-world situations is given, along with anticipated future directions. Chimera includes full user documentation, is free to academic and nonprofit users, and is available for Microsoft Windows, Linux, Apple Mac OS X, SGI IRIX, and HP Tru64 Unix from http://www.cgl.ucsf.edu/chimera/. Copyright 2004 Wiley Periodicals, Inc.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Multiple sequence alignment with the Clustal series of programs.

          R Chenna (2003)
          The Clustal series of programs are widely used in molecular biology for the multiple alignment of both nucleic acid and protein sequences and for preparing phylogenetic trees. The popularity of the programs depends on a number of factors, including not only the accuracy of the results, but also the robustness, portability and user-friendliness of the programs. New features include NEXUS and FASTA format output, printing range numbers and faster tree calculation. Although, Clustal was originally developed to run on a local computer, numerous Web servers have been set up, notably at the EBI (European Bioinformatics Institute) (http://www.ebi.ac.uk/clustalw/).
            • Record: found
            • Abstract: found
            • Article: not found

            Reduced surface: an efficient way to compute molecular surfaces.

            Because of their wide use in molecular modeling, methods to compute molecular surfaces have received a lot of interest in recent years. However, most of the proposed algorithms compute the analytical representation of only the solvent-accessible surface. There are a few programs that compute the analytical representation of the solvent-excluded surface, but they often have problems handling singular cases of self-intersecting surfaces and tend to fail on large molecules (more than 10,000 atoms). We describe here a program called MSMS, which is shown to be fast and reliable in computing molecular surfaces. It relies on the use of the reduced surface that is briefly defined here and from which the solvent-accessible and solvent-excluded surfaces are computed. The four algorithms composing MSMS are described and their complexity is analyzed. Special attention is given to the handling of self-intersecting parts of the solvent-excluded surface called singularities. The program has been compared with Connolly's program PQMS [M.L. Connolly (1993) Journal of Molecular Graphics, Vol. 11, pp. 139-141] on a set of 709 molecules taken from the Brookhaven Data Base. MSMS was able to compute topologically correct surfaces for each molecule in the set. Moreover, the actual time spent to compute surfaces is in agreement with the theoretical complexity of the program, which is shown to be O[n log(n)] for n atoms. On a Hewlett-Packard 9000/735 workstation, MSMS takes 0.73 s to produce a triangulated solvent-excluded surface for crambin (1 crn, 46 residues, 327 atoms, 4772 triangles), 4.6 s for thermolysin (3tln, 316 residues, 2437 atoms, 26462 triangles), and 104.53 s for glutamine synthetase (2gls, 5676 residues, 43632 atoms, 476665 triangles).
              • Record: found
              • Abstract: not found
              • Article: not found

              NAMD2: Greater Scalability for Parallel Molecular Dynamics


                Author and article information

                Journal of Computational Chemistry
                J. Comput. Chem.
                October 2004
                October 2004
                : 25
                : 13
                : 1605-1612
                © 2004




                Comment on this article


                Similar content6,295

                Cited by13,826

                Most referenced authors1,157