59
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Insights into the Trypanosome-Host Interactions Revealed through Transcriptomic Analysis of Parasitized Tsetse Fly Salivary Glands

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The agents of sleeping sickness disease, Trypanosoma brucei complex parasites, are transmitted to mammalian hosts through the bite of an infected tsetse. Information on tsetse-trypanosome interactions in the salivary gland (SG) tissue, and on mammalian infective metacyclic (MC) parasites present in the SG, is sparse. We performed RNA-seq analyses from uninfected and T. b. brucei infected SGs of Glossina morsitans morsitans. Comparison of the SG transcriptomes to a whole body fly transcriptome revealed that only 2.7% of the contigs are differentially expressed during SG infection, and that only 263 contigs (0.6%) are preferentially expressed in the SGs (SG-enriched). The expression of only 37 contigs (0.08%) and 27 SG-enriched contigs (10%) were suppressed in infected SG. These suppressed contigs accounted for over 55% of the SG transcriptome, and included the most abundant putative secreted proteins with anti-hemostatic functions present in saliva. In contrast, expression of putative host proteins associated with immunity, stress, cell division and tissue remodeling were enriched in infected SG suggesting that parasite infections induce host immune and stress response(s) that likely results in tissue renewal. We also performed RNA-seq analysis from mouse blood infected with the same parasite strain, and compared the transcriptome of bloodstream form (BSF) cells with that of parasites obtained from the infected SG. Over 30% of parasite transcripts are differentially regulated between the two stages, and reflect parasite adaptations to varying host nutritional and immune ecology. These differences are associated with the switch from an amino acid based metabolism in the SG to one based on glucose utilization in the blood, and with surface coat modifications that enable parasite survival in the different hosts. This study provides a foundation on the molecular aspects of the trypanosome dialogue with its tsetse and mammalian hosts, necessary for future functional investigations.

          Author Summary

          Tsetse flies transmit the causative agents of African sleeping sickness and nagana in sub-Saharan Africa. The parasites are acquired when tsetse flies feed on an infected host, undergo multiplication in the fly gut and migrate to the salivary glands (SG). The cycle resumes once this infected fly transmits the parasites in conjunction with saliva to another host when feeding. We compared gene expression changes between parasitized and uninfected tsetse SG. We also assessed changes in parasite gene expression in the tsetse SG in relation to those present within vertebrate blood. We found that parasite infections increase expression of host proteins associated with stress and cell division, indicative of extensive cellular damage in SG. We also found that parasite infections reduce expression of the most highly expressed SG-specific secreted proteins, suggesting modification of saliva composition. The parasite transcriptome reveals changes in specific cell surface proteins and in metabolism related to glucose-amino acid utilization in the different host environments. This study provides information for critical understanding of tsetse-trypanosome interactions, and transcriptional changes that likely enable the parasite to persist in the varying environment of its insect and vertebrate hosts.

          Related collections

          Most cited references77

          • Record: found
          • Abstract: found
          • Article: not found

          The genome of the African trypanosome Trypanosoma brucei.

          African trypanosomes cause human sleeping sickness and livestock trypanosomiasis in sub-Saharan Africa. We present the sequence and analysis of the 11 megabase-sized chromosomes of Trypanosoma brucei. The 26-megabase genome contains 9068 predicted genes, including approximately 900 pseudogenes and approximately 1700 T. brucei-specific genes. Large subtelomeric arrays contain an archive of 806 variant surface glycoprotein (VSG) genes used by the parasite to evade the mammalian immune system. Most VSG genes are pseudogenes, which may be used to generate expressed mosaic genes by ectopic recombination. Comparisons of the cytoskeleton and endocytic trafficking systems with those of humans and other eukaryotic organisms reveal major differences. A comparison of metabolic pathways encoded by the genomes of T. brucei, T. cruzi, and Leishmania major reveals the least overall metabolic capability in T. brucei and the greatest in L. major. Horizontal transfer of genes of bacterial origin has contributed to some of the metabolic differences in these parasites, and a number of novel potential drug targets have been identified.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            De novo assembly and analysis of RNA-seq data.

            We describe Trans-ABySS, a de novo short-read transcriptome assembly and analysis pipeline that addresses variation in local read densities by assembling read substrings with varying stringencies and then merging the resulting contigs before analysis. Analyzing 7.4 gigabases of 50-base-pair paired-end Illumina reads from an adult mouse liver poly(A) RNA library, we identified known, new and alternative structures in expressed transcripts, and achieved high sensitivity and specificity relative to reference-based assembly methods.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role of arthropod saliva in blood feeding: sialome and post-sialome perspectives.

              This review addresses the problems insects and ticks face to feed on blood and the solutions these invertebrates engender to overcome these obstacles, including a sophisticated salivary cocktail of potent pharmacologic compounds. Recent advances in transcriptome and proteome research allow an unprecedented insight into the complexity of these compounds, indicating that their molecular diversity as well as the diversity of their targets is still larger than previously thought.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Negl Trop Dis
                PLoS Negl Trop Dis
                plos
                plosntds
                PLoS Neglected Tropical Diseases
                Public Library of Science (San Francisco, USA )
                1935-2727
                1935-2735
                April 2014
                24 April 2014
                : 8
                : 4
                : e2649
                Affiliations
                [1 ]Yale School of Public Health, Department of Epidemiology of Microbial Diseases, LEPH, New Haven, Connecticut, United States of America
                Fundaçao Oswaldo Cruz, Brazil
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: ELT JBB AFS SR SA. Performed the experiments: ELT JBB XZ AFS SR TLAeS MO. Analyzed the data: JBB ELT XZ SA. Wrote the paper: ELT JBB XZ AFS SA.

                [¤a]

                Current address: Department of Biological Sciences, McMicken College of Arts and Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America.

                [¤b]

                Current address: Department of Biology, Bard College, Annandale-on-Hudson, New York, United States of America.

                [¤c]

                Current address: Instituto do Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.

                Article
                PNTD-D-13-01433
                10.1371/journal.pntd.0002649
                3998935
                24763140
                56dae990-d2d2-45a4-889f-52a4c7c9a900
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 24 September 2013
                : 3 December 2013
                Page count
                Pages: 16
                Funding
                This study received support from NIH AI051584, Li Foundation and Ambrose Monell Foundation awards to SA and NIH F32AI093023 to JB. TLAeS was sponsored by the Brazilian funding agency Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Genetics
                Genomics
                Microbiology
                Veterinary Science

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article