14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Plant Host-Associated Mechanisms for Microbial Selection

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Plants serve as host to numerous microorganisms. The members of these microbial communities interact among each other and with the plant, and there is increasing evidence to suggest that the microbial community may promote plant growth, improve drought tolerance, facilitate pathogen defense and even assist in environmental remediation. Therefore, it is important to better understand the mechanisms that influence the composition and structure of microbial communities, and what role the host may play in the recruitment and control of its microbiome. In particular, there is a growing body of research to suggest that plant defense systems not only provide a layer of protection against pathogens but may also actively manage the composition of the overall microbiome. In this review, we provide an overview of the current research into mechanisms employed by the plant host to select for and control its microbiome. We specifically review recent research that expands upon the role of keystone microbial species, phytohormones, and abiotic stress, and in how they relate to plant driven dynamic microbial structuring.

          Related collections

          Most cited references110

          • Record: found
          • Abstract: found
          • Article: not found

          Feed Your Friends: Do Plant Exudates Shape the Root Microbiome?

          Plant health in natural environments depends on interactions with complex and dynamic communities comprising macro- and microorganisms. While many studies have provided insights into the composition of rhizosphere microbiomes (rhizobiomes), little is known about whether plants shape their rhizobiomes. Here, we discuss physiological factors of plants that may govern plant-microbe interactions, focusing on root physiology and the role of root exudates. Given that only a few plant transport proteins are known to be involved in root metabolite export, we suggest novel families putatively involved in this process. Finally, building off of the features discussed in this review, and in analogy to well-known symbioses, we elaborate on a possible sequence of events governing rhizobiome assembly.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Mechanism of Salinity Tolerance in Plants: Physiological, Biochemical, and Molecular Characterization

            Salinity is a major abiotic stress limiting growth and productivity of plants in many areas of the world due to increasing use of poor quality of water for irrigation and soil salinization. Plant adaptation or tolerance to salinity stress involves complex physiological traits, metabolic pathways, and molecular or gene networks. A comprehensive understanding on how plants respond to salinity stress at different levels and an integrated approach of combining molecular tools with physiological and biochemical techniques are imperative for the development of salt-tolerant varieties of plants in salt-affected areas. Recent research has identified various adaptive responses to salinity stress at molecular, cellular, metabolic, and physiological levels, although mechanisms underlying salinity tolerance are far from being completely understood. This paper provides a comprehensive review of major research advances on biochemical, physiological, and molecular mechanisms regulating plant adaptation and tolerance to salinity stress.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Fundamentals of Microbial Community Resistance and Resilience

              Microbial communities are at the heart of all ecosystems, and yet microbial community behavior in disturbed environments remains difficult to measure and predict. Understanding the drivers of microbial community stability, including resistance (insensitivity to disturbance) and resilience (the rate of recovery after disturbance) is important for predicting community response to disturbance. Here, we provide an overview of the concepts of stability that are relevant for microbial communities. First, we highlight insights from ecology that are useful for defining and measuring stability. To determine whether general disturbance responses exist for microbial communities, we next examine representative studies from the literature that investigated community responses to press (long-term) and pulse (short-term) disturbances in a variety of habitats. Then we discuss the biological features of individual microorganisms, of microbial populations, and of microbial communities that may govern overall community stability. We conclude with thoughts about the unique insights that systems perspectives – informed by meta-omics data – may provide about microbial community stability.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                03 July 2019
                2019
                : 10
                : 862
                Affiliations
                [1] 1Oak Ridge National Laboratory, Biosciences Division, The Center for Bioenergy Innovation , Oak Ridge, TN, United States
                [2] 2The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville , Knoxville, TN, United States
                Author notes

                Edited by: Nicolae Radu Zabet, University of Essex, United Kingdom

                Reviewed by: Laila Pamela Partida-Martinez, Center for Research and Advanced Studies (CINVESTAV), Mexico; Rong Li, Nanjing Agricultural University, China

                *Correspondence: Daniel Jacobson jacobsonda@ 123456ornl.gov

                This article was submitted to Plant Microbe Interactions, a section of the journal Frontiers in Plant Science

                Article
                10.3389/fpls.2019.00862
                6618679
                31333701
                56dd3adf-969a-477c-b6ba-5e29c409e452
                Copyright © 2019 Jones, Garcia, Furches, Tuskan and Jacobson.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 05 February 2019
                : 14 June 2019
                Page count
                Figures: 2, Tables: 0, Equations: 0, References: 148, Pages: 14, Words: 12542
                Funding
                Funded by: U.S. Department of Energy 10.13039/100000015
                Categories
                Plant Science
                Review

                Plant science & Botany
                microbial community,jasmonic acid,salicylic acid,ethylene,keystone species,abiotic stress,biotic stress,microbiota

                Comments

                Comment on this article