14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      High Mobility Group Box 1 Promotes Aortic Calcification in Chronic Kidney Disease via the Wnt/β-Catenin Pathway

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Vascular calcification (VC) is common in chronic kidney disease (CKD), where cardiovascular mortality remains the leading cause of death. Here, we examined the role of high-mobility group box1 (HMGB1), a nuclear DNA-binding protein involved in inflammation, in aortic calcification and renal dysfunction induced by high phosphate in a mouse model of CKD induced by 5/6 nephrectomy. HMGB1 and kidney function markers were measured by ELISA in the serum of CKD patients and in CKD mice. Sections of the aortas of mice were analyzed by immunofluorescence and Alizarin red staining, and protein lysates were generated to analyze the expression of related proteins in response to silencing of HMGB1 or β-catenin by western blotting. Our results showed that serum HMGB1 levels were significantly higher in CKD patients than in healthy controls and related to disease stage. High phosphate promoted the translocation of HMGB1 from the nucleus to the cytosol and aortic calcification in CKD mice in vivo, whereas HMGB1 knockdown ameliorated part of renal and vascular function. β-catenin silencing reversed high phosphate-induced calcification and restored renal marker levels. Taken together, our results suggest that HMGB1 is involved in VC associated with CKD via a mechanism involving the β-catenin.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Phosphate regulation of vascular smooth muscle cell calcification.

          Vascular calcification is a common finding in atherosclerosis and a serious problem in diabetic and uremic patients. Because of the correlation of hyperphosphatemia and vascular calcification, the ability of extracellular inorganic phosphate levels to regulate human aortic smooth muscle cell (HSMC) culture mineralization in vitro was examined. HSMCs cultured in media containing normal physiological levels of inorganic phosphate (1.4 mmol/L) did not mineralize. In contrast, HSMCs cultured in media containing phosphate levels comparable to those seen in hyperphosphatemic individuals (>1.4 mmol/L) showed dose-dependent increases in mineral deposition. Mechanistic studies revealed that elevated phosphate treatment of HSMCs also enhanced the expression of the osteoblastic differentiation markers osteocalcin and Cbfa-1. The effects of elevated phosphate on HSMCs were mediated by a sodium-dependent phosphate cotransporter (NPC), as indicated by the ability of the specific NPC inhibitor phosphonoformic acid, to dose dependently inhibit phosphate-induced calcium deposition as well as osteocalcin and Cbfa-1 gene expression. With the use of polymerase chain reaction and Northern blot analyses, the NPC in HSMCs was identified as Pit-1 (Glvr-1), a member of the novel type III NPCs. These data suggest that elevated phosphate may directly stimulate HSMCs to undergo phenotypic changes that predispose to calcification and offer a novel explanation of the phenomenon of vascular calcification under hyperphosphatemic conditions. The full text of this article is available at http://www.circresaha.org.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Apoptosis regulates human vascular calcification in vitro: evidence for initiation of vascular calcification by apoptotic bodies.

            The mechanisms involved in the initiation of vascular calcification are not known, but matrix vesicles, the nucleation sites for calcium crystal formation in bone, are likely candidates, because similar structures have been found in calcified arteries. The regulation of matrix vesicle production is poorly understood but is thought to be associated with apoptotic cell death. In the present study, we investigated the role of apoptosis in vascular calcification. We report that apoptosis occurs in a human vascular calcification model in which postconfluent vascular smooth muscle cell (VSMC) cultures form nodules spontaneously and calcify after approximately 28 days. Apoptosis occurred before the onset of calcification in VSMC nodules and was detected by several methods, including nuclear morphology, the TUNEL technique, and external display of phosphatidyl serine. Inhibition of apoptosis with the caspase inhibitor ZVAD.fmk reduced calcification in nodules by approximately 40%, as measured by the cresolphthalein method and alizarin red staining. In addition, when apoptosis was stimulated in nodular cultures with anti-Fas IgM, there was a 10-fold increase in calcification. Furthermore, incubation of VSMC-derived apoptotic bodies with (45)Ca demonstrated that, like matrix vesicles, they can concentrate calcium. These observations provide evidence that apoptosis precedes VSMC calcification and that apoptotic bodies derived from VSMCs may act as nucleating structures for calcium crystal formation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Smooth muscle cell-specific runx2 deficiency inhibits vascular calcification.

              Vascular calcification is a hallmark of atherosclerosis, a major cause of morbidity and mortality in the United States. We have previously reported that the osteogenic transcription factor Runx2 is an essential and sufficient regulator of calcification of vascular smooth muscle cells (VSMC) in vitro. To determine the contribution of osteogenic differentiation of VSMC to the pathogenesis of vascular calcification and the function of VSMC-derived Runx2 in regulating calcification in vivo. SMC-specific Runx2-deficient mice, generated by breeding SM22α-Cre mice with the Runx2 exon 8 floxed mice, exhibited normal aortic gross anatomy and expression levels of SMC-specific marker genes. Runx2 deficiency did not affect basal SMC markers, but inhibited oxidative stress-reduced expression of SMC markers. High-fat-diet-induced vascular calcification in vivo was markedly inhibited in the Runx2-deficient mice in comparison with their control littermates. Runx2 deficiency inhibited the expression of receptor activator of nuclear factor κB ligand, which was accompanied by decreased macrophage infiltration and formation of osteoclast-like cells in the calcified lesions. Coculture of VSMC with bone marrow-derived macrophages demonstrated that the Runx2-deficient VSMC failed to promote differentiation of macrophages into osteoclast-like cells. These data have determined the importance of osteogenic differentiation of VSMC in the pathogenesis of vascular calcification in mice and defined the functional role of SMC-derived Runx2 in regulating vascular calcification and promoting infiltration of macrophages into the calcified lesion to form osteoclast-like cells. Our studies suggest that the development of vascular calcification is coupled with the formation of osteoclast-like cells, paralleling the bone remodeling process.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                05 June 2018
                2018
                : 9
                : 665
                Affiliations
                [1] 1Department of Ultrasound, Shanghai Changhai Hospital, Second Military Medical University , Shanghai, China
                [2] 2Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
                Author notes

                Edited by: Matthew A. Bailey, University of Edinburgh, United Kingdom

                Reviewed by: Laura Denby, University of Edinburgh, United Kingdom; David Andrew Long, University College London, United Kingdom

                *Correspondence: Shu Rong sophiars@ 123456126.com

                This article was submitted to Renal and Epithelial Physiology, a section of the journal Frontiers in Physiology

                Article
                10.3389/fphys.2018.00665
                5996195
                29922171
                56df3eb1-d908-4d69-800f-73a428440213
                Copyright © 2018 Jin, Rong, Yuan, Gu, Jia, Wang, Yu and Zhuge.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 06 September 2017
                : 14 May 2018
                Page count
                Figures: 4, Tables: 1, Equations: 0, References: 55, Pages: 10, Words: 6897
                Funding
                Funded by: National Natural Science Foundation of China 10.13039/501100001809
                Award ID: 81200542
                Funded by: Natural Science Foundation of Shanghai 10.13039/100007219
                Award ID: 16ZR1427600
                Categories
                Physiology
                Original Research

                Anatomy & Physiology
                vascular calcification,chronic kidney disease,high-mobility group box1,β-catenin,renal dysfunction

                Comments

                Comment on this article