62
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Novel High-Affinity Sucrose Transporter Is Required for Virulence of the Plant Pathogen Ustilago maydis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A novel, high-affinity sucrose transporter identified in the plasma membrane of the plant pathogen Ustilago maydis is essential for fungal virulence and successful infection of maize.

          Abstract

          Plant pathogenic fungi cause massive yield losses and affect both quality and safety of food and feed produced from infected plants. The main objective of plant pathogenic fungi is to get access to the organic carbon sources of their carbon-autotrophic hosts. However, the chemical nature of the carbon source(s) and the mode of uptake are largely unknown. Here, we present a novel, plasma membrane-localized sucrose transporter (Srt1) from the corn smut fungus Ustilago maydis and its characterization as a fungal virulence factor. Srt1 has an unusually high substrate affinity, is absolutely sucrose specific, and allows the direct utilization of sucrose at the plant/fungal interface without extracellular hydrolysis and, thus, without the production of extracellular monosaccharides known to elicit plant immune responses. srt1 is expressed exclusively during infection, and its deletion strongly reduces fungal virulence. This emphasizes the central role of this protein both for efficient carbon supply and for avoidance of apoplastic signals potentially recognized by the host.

          Author Summary

          The plant parasitic fungus Ustilago maydis is a biotrophic pathogen that depends on live plant tissue for development. It is highly adapted to maize ( Zea mays), where it causes the corn smut disease. Fungal cells growing within the plant apoplast are surrounded by the host plasma membrane at all growth stages, thereby establishing tight interaction zones with the host cells that assure optimal access to host-derived nutrients, including organic carbon sources. Here, we focus on the previously unknown feeding mechanisms of this plant pathogen within its host plant. We identified a fungal plasma membrane transporter, Srt1, that is expressed exclusively after plant infection and that turns out to be essential for virulence development of Ustilago in infected plants. Srt1 is the first characterized fungal transporter that allows direct utilization of sucrose without extracellular hydrolysis into monosaccharides, the carbon form more commonly taken up by pathogenic fungi. It is highly specific for sucrose, and its affinity largely exceeds that of equivalent plant transporters. This not only provides advantages for the carbon acquisition by the pathogen, but quite likely also offers a mechanism to prevent induction of plant defense responses known to occur upon apoplastic sucrose hydrolysis.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: not found
          • Article: not found

          Improved method for high efficiency transformation of intact yeast cells.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis.

            Ustilago maydis is a ubiquitous pathogen of maize and a well-established model organism for the study of plant-microbe interactions. This basidiomycete fungus does not use aggressive virulence strategies to kill its host. U. maydis belongs to the group of biotrophic parasites (the smuts) that depend on living tissue for proliferation and development. Here we report the genome sequence for a member of this economically important group of biotrophic fungi. The 20.5-million-base U. maydis genome assembly contains 6,902 predicted protein-encoding genes and lacks pathogenicity signatures found in the genomes of aggressive pathogenic fungi, for example a battery of cell-wall-degrading enzymes. However, we detected unexpected genomic features responsible for the pathogenicity of this organism. Specifically, we found 12 clusters of genes encoding small secreted proteins with unknown function. A significant fraction of these genes exists in small gene families. Expression analysis showed that most of the genes contained in these clusters are regulated together and induced in infected tissue. Deletion of individual clusters altered the virulence of U. maydis in five cases, ranging from a complete lack of symptoms to hypervirulence. Despite years of research into the mechanism of pathogenicity in U. maydis, no 'true' virulence factors had been previously identified. Thus, the discovery of the secreted protein gene clusters and the functional demonstration of their decisive role in the infection process illuminate previously unknown mechanisms of pathogenicity operating in biotrophic fungi. Genomic analysis is, similarly, likely to open up new avenues for the discovery of virulence determinants in other pathogens.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Reprogramming a maize plant: transcriptional and metabolic changes induced by the fungal biotroph Ustilago maydis.

              The fungal pathogen Ustilago maydis establishes a biotrophic relationship with its host plant maize (Zea mays). Hallmarks of the disease are large plant tumours in which fungal proliferation occurs. Previous studies suggested that classical defence pathways are not activated. Confocal microscopy, global expression profiling and metabolic profiling now shows that U. maydis is recognized early and triggers defence responses. Many of these early response genes are downregulated at later time points, whereas several genes associated with suppression of cell death are induced. The interplay between fungus and host involves changes in hormone signalling, induction of antioxidant and secondary metabolism, as well as the prevention of source leaf establishment. Our data provide novel insights into the complexity of a biotrophic interaction.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Biol
                plos
                plosbiol
                PLoS Biology
                Public Library of Science (San Francisco, USA )
                1544-9173
                1545-7885
                February 2010
                February 2010
                9 February 2010
                : 8
                : 2
                : e1000303
                Affiliations
                [1 ]Karlsruhe Institute of Technology, Institute for Applied Biosciences, Department of Genetics, Karlsruhe, Germany
                [2 ]Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
                [3 ]Friedrich-Alexander-University Erlangen-Nuremberg, Molecular Plant Physiology, Erlangen, Germany
                Duke University Medical Center, United States of America
                Author notes

                The author(s) have made the following declarations about their contributions: Conceived and designed the experiments: RW KW JK NS. Performed the experiments: RW KW SG. Analyzed the data: RW KW JK NS. Wrote the paper: JK NS.

                [¤]

                Current address: Karlsruhe Institute of Technology, Institute for Applied Biosciences, Department of Genetics, Karlsruhe, Germany

                Article
                09-PLBI-RA-2732R3
                10.1371/journal.pbio.1000303
                2817709
                20161717
                56e10ef3-7143-4c64-9f53-7455c51ea996
                Wahl et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 29 June 2009
                : 23 December 2009
                Page count
                Pages: 11
                Categories
                Research Article
                Plant Biology
                Plant Biology/Agricultural Biotechnology
                Plant Biology/Plant-Biotic Interactions

                Life sciences
                Life sciences

                Comments

                Comment on this article