76
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      IL-6 and IL-10 Anti-Inflammatory Activity Links Exercise to Hypothalamic Insulin and Leptin Sensitivity through IKKβ and ER Stress Inhibition

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Physical activity confers beneficial metabolic effects by inducing anti-inflammatory activity in the hypothalamus region of the brain in rodents, resulting in a reorganization of the set point of nutritional balance and reduced insulin and leptin resistance.

          Abstract

          Overnutrition caused by overeating is associated with insulin and leptin resistance through IKKβ activation and endoplasmic reticulum (ER) stress in the hypothalamus. Here we show that physical exercise suppresses hyperphagia and associated hypothalamic IKKβ/NF-κB activation by a mechanism dependent upon the pro-inflammatory cytokine interleukin (IL)-6. The disruption of hypothalamic-specific IL-6 action blocked the beneficial effects of exercise on the re-balance of food intake and insulin and leptin resistance. This molecular mechanism, mediated by physical activity, involves the anti-inflammatory protein IL-10, a core inhibitor of IKKβ/NF-κB signaling and ER stress. We report that exercise and recombinant IL-6 requires IL-10 expression to suppress hyperphagia-related obesity. Moreover, in contrast to control mice, exercise failed to reverse the pharmacological activation of IKKβ and ER stress in C3H/HeJ mice deficient in hypothalamic IL-6 and IL-10 signaling. Hence, inflammatory signaling in the hypothalamus links beneficial physiological effects of exercise to the central action of insulin and leptin.

          Author Summary

          The hypothalamus is a brain region that gathers information on the body's nutritional status and governs the release of multiple metabolic signaling molecules such as insulin and leptin to maintain homeostasis. Overeating and obesity are associated with insulin and leptin resistance in the hypothalamus, and recent studies provide an intriguing link between inflammation and dysfunction of hypothalamic insulin and leptin signaling through activation of IKKβ, a key player in immune response, and endoplasmic reticulum (ER) stress. This means that strategies to reduce the aberrant activation of inflammatory signaling in the hypothalamus are of great interest to improve the central insulin and leptin action and prevent or treat related metabolic diseases. Using a combination of pharmacological, genetic, and physiological approaches, our study indicates that physical activity reorganizes the set point of nutritional balance through anti-inflammatory signaling mediated by interleukin (IL)-6 and IL-10 in the hypothalamus of rodents. Hence, IL-6 and IL-10 are important physiological contributors to the central insulin and leptin action mediated by exercise, linking it to hypothalamic ER stress and inflammation.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          IL-6 enhances plasma IL-1ra, IL-10, and cortisol in humans.

          The purpose of the present study was to test the hypothesis that a transient increase in plasma IL-6 induces an anti-inflammatory environment in humans. Therefore, young healthy volunteers received a low dose of recombinant human (rh)IL-6 or saline for 3 h. Plasma IL-6 levels during rhIL-6 infusion were approximately 140 pg/ml, corresponding to the levels obtained during strenuous exercise. The infusion of rhIL-6 did not induce enhanced levels of the proinflammatory cytokine TNF-alpha but enhanced the plasma levels of the two anti-inflammatory cytokines IL-1 receptor agonist (IL-1ra) and IL-10 compared with saline infusion. In addition, C-reactive protein increased 3 h post-rhIL-6 infusion and was further elevated 16 h later compared with saline infusion. rhIL-6 induced increased levels of plasma cortisol and, consequently, an increase in circulating neutrophils and a decrease in the lymphocyte number without effects on plasma epinephrine, body temperature, mean arterial pressure, or heart rate. In conclusion, this study demonstrates that physiological concentrations of IL-6 induce an anti-inflammatory rather than an inflammatory response in humans and that IL-6, independently of TNF-alpha, enhances the levels not only of IL-1ra but also of IL-10. Furthermore, IL-6 induces an increase in cortisol and, consequently, in neutrocytosis and late lymphopenia to the same magnitude and with the same kinetics as during exercise, suggesting that muscle-derived IL-6 has a central role in exercise-induced leukocyte trafficking.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Interleukin-6-deficient mice develop mature-onset obesity.

            The immune-modulating cytokine interleukin-6 (IL-6) is expressed both in adipose tissue and centrally in hypothalamic nuclei that regulate body composition. We investigated the impact of loss of IL-6 on body composition in mice lacking the gene encoding IL-6 (Il6-/- mice) and found that they developed mature-onset obesity that was partly reversed by IL-6 replacement. The obese Il6-/- mice had disturbed carbohydrate and lipid metabolism, increased leptin levels and decreased responsiveness to leptin treatment. To investigate the possible mechanism and site of action of the anti-obesity effect of IL-6, we injected rats centrally and peripherally with IL-6 at low doses. Intracerebroventricular, but not intraperitoneal IL-6 treatment increased energy expenditure. In conclusion, centrally acting IL-6 exerts anti-obesity effects in rodents.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase.

              Although interleukin-6 (IL-6) has been associated with insulin resistance, little is known regarding the effects of IL-6 on insulin sensitivity in humans in vivo. Here, we show that IL-6 infusion increases glucose disposal without affecting the complete suppression of endogenous glucose production during a hyperinsulinemic-euglycemic clamp in healthy humans. Because skeletal muscle accounts for most of the insulin-stimulated glucose disposal in vivo, we examined the mechanism(s) by which IL-6 may affect muscle metabolism using L6 myotubes. IL-6 treatment increased fatty acid oxidation, basal and insulin-stimulated glucose uptake, and translocation of GLUT4 to the plasma membrane. Furthermore, IL-6 rapidly and markedly increased AMP-activated protein kinase (AMPK). To determine whether the activation of AMPK mediated cellular metabolic events, we conducted experiments using L6 myotubes infected with dominant-negative AMPK alpha-subunit. The effects described above were abrogated in AMPK dominant-negative-infected cells. Our results demonstrate that acute IL-6 treatment enhances insulin-stimulated glucose disposal in humans in vivo, while the effects of IL-6 on glucose and fatty acid metabolism in vitro appear to be mediated by AMPK.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Biol
                plos
                plosbiol
                PLoS Biology
                Public Library of Science (San Francisco, USA )
                1544-9173
                1545-7885
                August 2010
                August 2010
                24 August 2010
                : 8
                : 8
                : e1000465
                Affiliations
                [1 ]Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
                [2 ]Department of Anatomy, Cell Biology, Physiology and Biophysics, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
                University of Cambridge, United Kingdom
                Author notes

                The author(s) have made the following declarations about their contributions: Conceived and designed the experiments: ERR JBC. Performed the experiments: ERR MBF DEC GZR JRP JM CTDS JCM POP DG RMM AGO TMA HFC. Analyzed the data: ERR DEC LAV MJS JBC. Wrote the paper: ERR JBC.

                Article
                09-PLBI-RA-4592R3
                10.1371/journal.pbio.1000465
                2927536
                20808781
                56f3f634-b524-4ffb-9175-741223c8b171
                Ropelle et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 23 October 2009
                : 15 July 2010
                Page count
                Pages: 20
                Categories
                Research Article
                Diabetes and Endocrinology/Obesity
                Physiology/Neuronal Signaling Mechanisms

                Life sciences
                Life sciences

                Comments

                Comment on this article