6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Hypoxia sensitivity of a voltage-gated potassium current in porcine intrapulmonary vein smooth muscle cells

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hypoxia contracts the pulmonary vein, but the underlying cellular effectors remain unclear. Utilizing contractile studies and whole cell patch-clamp electrophysiology, we report for the first time a hypoxia-sensitive K + current in porcine pulmonary vein smooth muscle cells (PVSMC). Hypoxia induced a transient contractile response that was 56 ± 7% of the control response (80 mM KCl). This contraction required extracellular Ca 2+ and was sensitive to Ca 2+ channel blockade. Blockade of K + channels by tetraethylammonium chloride (TEA) or 4-aminopyridine (4-AP) reversibly inhibited the hypoxia-mediated contraction. Single-isolated PVSMC (typically 159.1 ± 2.3 μm long) had mean resting membrane potentials (RMP) of −36 ± 4 mV with a mean membrane capacitance of 108 ± 3.5 pF. Whole cell patch-clamp recordings identified a rapidly activating, partially inactivating K + current ( I KH) that was hypoxia, TEA, and 4-AP sensitive. I KH was insensitive to Penitrem A or glyburide in PVSMC and had a time to peak of 14.4 ± 3.3 ms and recovered in 67 ms following inactivation at +80 mV. Peak window current was −32 mV, suggesting that I KH may contribute to PVSMC RMP. The molecular identity of the potassium channel is not clear. However, RT-PCR, using porcine pulmonary artery and vein samples, identified Kv 1.5, Kv 2.1, and BK, with all three being more abundant in the PV. Both artery and vein expressed STREX, a highly conserved and hypoxia-sensitive BK channel variant. Taken together, our data support the hypothesis that hypoxic inhibition of I KH would contribute to hypoxic-induced contraction in PVSMC.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical classification of pulmonary hypertension.

          In 1998, during the Second World Symposium on Pulmonary Hypertension (PH) held in Evian, France, a clinical classification of PH was proposed. The aim of the Evian classification was to individualize different categories sharing similarities in pathophysiological mechanisms, clinical presentation, and therapeutic options. The Evian classification is now well accepted and widely used in clinical practice, especially in specialized centers. In addition, this classification has been used by the U.S. Food and Drug Administration and the European Agency for Drug Evaluation for the labeling of newly approved medications in PH. In 2003, during the Third World Symposium on Pulmonary Arterial Hypertension held in Venice, Italy, it was decided to maintain the general architecture and philosophy of the Evian classification. However, some modifications have been proposed, mainly to abandon the term "primary pulmonary hypertension" and to replace it with "idiopathic pulmonary hypertension"; to reclassify pulmonary veno-occlusive disease and pulmonary capillary hemangiomatosis; to update risk factors and associated conditions for pulmonary arterial hypertension and to propose guidelines in order to improve the classification of congenital systemic-to-pulmonary shunts.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pulmonary veno-occlusive disease.

            Pulmonary veno-occlusive disease (PVOD) is currently classified as a subgroup of pulmonary arterial hypertension (PAH) and accounts for 5-10% of cases initially considered to be idiopathic PAH. PVOD has been described as idiopathic or complicating other conditions, including connective tissue diseases, HIV infection, bone marrow transplantation, sarcoidosis and pulmonary Langerhans cell granulomatosis. PVOD shares broadly similar clinical presentation, genetic background and haemodynamic characteristics with PAH. Compared to PAH, PVOD is characterised by a higher male/female ratio, higher tobacco exposure, lower arterial oxygen tension at rest, lower diffusing capacity of the lung for carbon monoxide, and lower oxygen saturation nadir during the 6-min walk test. High-resolution computed tomography (HRCT) of the chest can be suggestive of PVOD in the presence of centrilobular ground-glass opacities, septal lines and lymph node enlargement. Similarly, occult alveolar haemorrhage is associated with PVOD. A noninvasive diagnostic approach using HRCT of the chest, arterial blood gases, pulmonary function tests and bronchoalveolar lavage could be helpful for the detection of PVOD patients and in avoiding high-risk surgical lung biopsy for histological confirmation. PVOD is characterised by a poor prognosis and the possibility of developing severe pulmonary oedema with specific PAH therapy. Lung transplantation is the treatment of choice. Cautious use of specific PAH therapy can, however, be helpful in some patients.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Why does pulmonary venous pressure rise after onset of LV dysfunction: a theoretical analysis.

              One of the most important consequences of acute left ventricular dysfunction (LVD) is pulmonary edema resulting from a rise in pulmonary venous pressure (PVP). It is generally believed that the PVP rise is a direct hemodynamic consequence of LVD. While this paradigm seems plausible, especially if the LV is viewed as a sump pump, there is no specific evidence to support this simple explanation. A theoretical analysis was performed to assess the hemodynamic mechanisms responsible for the dramatic rise in PVP after acute LVD. The ventricles were modeled as time-varying elastances; pulmonary and systemic vascular systems were modeled as series of resistive and capacitive elements. In response to a 50% decrease in LV contractile strength [end-systolic elastance (Ees)], cardiac output (CO) and mean arterial pressure (MAP) dropped substantially, while PVP increased minimally from its baseline of 12 to approximately 15 mmHg. With LV Ees set at 50% of normal, the effects of sympathetic activation were tested. When heart rate and total peripheral resistance were increased, CO and MAP improved, yet PVP still did not rise. The only intervention that caused a substantial increase in PVP was to simulate the decrease in unstressed volume (VU) of the venous system known to occur with sympathetic activation. When VU was decreased by about 15-20% (comparable to experimentally observed shifts with acute heart failure), PVP increased above 25 mmHg. The effects of pericardial constraints were investigated, and the results suggest a major role of this organ in determining the overall hemodynamic response to acute LVD, sympathetic activation, and explaining the responses to therapy. Thus this analysis suggests that elevations of PVP do not occur simply as a direct hemodynamic consequence of acute LVD. Rather, changes in PVP may be dictated more by sympathetic control on venous capacity. If confirmed, recognition of this as a primary mechanism may prove important in directing development of new therapies and in understanding the mechanisms of disease progression in heart failure.
                Bookmark

                Author and article information

                Journal
                American Journal of Physiology-Lung Cellular and Molecular Physiology
                American Journal of Physiology-Lung Cellular and Molecular Physiology
                American Physiological Society
                1040-0605
                1522-1504
                September 01 2012
                September 01 2012
                : 303
                : 5
                : L476-L486
                Affiliations
                [1 ]School of Pharmacy and Life Sciences, Robert Gordon University, Schoolhill, Aberdeen;
                [2 ]Department of Biological and Biomedical Science, Glasgow Caledonian University, Glasgow, Scotland
                Article
                10.1152/ajplung.00157.2012
                22773694
                5700e998-bf2d-40a1-bf23-1e56f403a5e0
                © 2012
                History

                Comments

                Comment on this article