19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Phosphatidylinositol 3-kinase in angiotensin II-induced hypertrophy of vascular smooth muscle cells.

      European Journal of Pharmacology
      Angiotensin II, pharmacology, Animals, Aorta, Thoracic, drug effects, enzymology, pathology, Dose-Response Relationship, Drug, Enzyme Inhibitors, Hypertrophy, Muscle, Smooth, Vascular, Phosphatidylinositol 3-Kinases, metabolism, Phosphorylation, Rats, Rats, Sprague-Dawley

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Activation of 4E-binding protein 1 (4E-BP1) by growth factors regulates protein synthesis in vascular smooth muscle cells. The interaction between G protein-coupled receptors and activated 4E-BP1 is unclear. We examined phosphadityl inositol (PI) 3-kinase in angiotensin II-induced 4E-BP1 phosphorylation in cultured rat vascular smooth muscle cells. Angiotensin II time and dose dependently stimulated phosphorylation of 4E-BP1 through the angiotensin AT(1) receptor. Pretreatment with wortmannin or 2-(4-Morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002), a PI 3-kinase inhibitor, suppressed angiotensin II-induced phosphorylation, but a mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinases (ERK) kinase-1 (MEK-1) inhibitor, 2'-Amino-3'-methoxyflavone (PD98059), and a p38 MAPK inhibitor, 4-(4-Fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)1H-imidazole (SB203580), had no effect. With regard to the involvement of mammalian target of rapamycin (mTOR) and p70 S6 kinase, angiotensin II-induced phosphorylation was abolished by pretreatment with rapamycin, but not by tosylphenylalanine chloromethyl ketone or tosyllysine chloromethyl ketone. Ca(2+) was involved, since intracellular Ca(2+) chelation inhibited angiotensin II-induced phosphorylation while a Ca(2+) ionophore, A23187, stimulated phosphorylation. Thus, angiotensin II induces the phosphorylation of 4E-BP1 via the PI 3-kinase/mTOR pathway, but not via ERK or p70 S6 kinase.

          Related collections

          Author and article information

          Comments

          Comment on this article