19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Polydatin inhibits mast cell-mediated allergic inflammation by targeting PI3K/Akt, MAPK, NF-κB and Nrf2/HO-1 pathways

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Polydatin(PD) shows anti-allergic inflammatory effect, and this study investigated its underlying mechanisms in in vitro and in vivo models. IgE-mediated passive cutaneous anaphylaxis (PCA) and passive systemic anaphylaxis (PSA) models were used to confirm PD effect in vivo. Various signaling pathway proteins in mast cell were examined. RT-PCR, ELISA and western blotting were applied when appropriate. Activity of Lyn and Fyn kinases in vitro was measured using the Kinase Enzyme System. PD dose-dependently reduced the pigmentation of Evans blue in the PCA model and decreased the concentration of serum histamine in PSA model, and attenuated the degranulation of mast cells without generating cytotoxicity. PD decreased pro-inflammatory cytokine expression (TNF-α, IL-4, IL-1β, and IL-8). PD directly inhibited activity of Lyn and Syk kinases and down-regulated downstream signaling pathway including MAPK, PI3K/AKT and NF-kB. In addition, PD also targets Nrf2/HO-1 pathway to inhibit mast cell-derived allergic inflammatory reactions. In conclusion, the study demonstrates that PD is a possible therapeutic candidate for allergic inflammatory diseases. It directly inhibited activity of Lyn and Syk kinases and down-regulates the signaling pathway of MAPK, PI3K/AKT and NF-κB, and up-regulates the signaling pathway of Nrf2/HO-1 to inhibit the degranulation of mast cells.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Mast cells and inflammation.

          Mast cells are well known for their role in allergic and anaphylactic reactions, as well as their involvement in acquired and innate immunity. Increasing evidence now implicates mast cells in inflammatory diseases where they are activated by non-allergic triggers, such as neuropeptides and cytokines, often exerting synergistic effects as in the case of IL-33 and neurotensin. Mast cells can also release pro-inflammatory mediators selectively without degranulation. In particular, IL-1 induces selective release of IL-6, while corticotropin-releasing hormone secreted under stress induces the release of vascular endothelial growth factor. Many inflammatory diseases involve mast cells in cross-talk with T cells, such as atopic dermatitis, psoriasis and multiple sclerosis, which all worsen by stress. How mast cell differential responses are regulated is still unresolved. Preliminary evidence suggests that mitochondrial function and dynamics control mast cell degranulation, but not selective release. Recent findings also indicate that mast cells have immunomodulatory properties. Understanding selective release of mediators could explain how mast cells participate in numerous diverse biologic processes, and how they exert both immunostimulatory and immunosuppressive actions. Unraveling selective mast cell secretion could also help develop unique mast cell inhibitors with novel therapeutic applications. This article is part of a Special Issue entitled: Mast cells in inflammation. Copyright © 2010 Elsevier B.V. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The tyrosine kinase network regulating mast cell activation.

            Mast cell mediator release represents a pivotal event in the initiation of inflammatory reactions associated with allergic disorders. These responses follow antigen-mediated aggregation of immunoglobulin E (IgE)-occupied high-affinity receptors for IgE (Fc epsilon RI) on the mast cell surface, a response which can be further enhanced following stem cell factor-induced ligation of the mast cell growth factor receptor KIT (CD117). Activation of tyrosine kinases is central to the ability of both Fc epsilon RI and KIT to transmit downstream signaling events required for the regulation of mast cell activation. Whereas KIT possesses inherent tyrosine kinase activity, Fc epsilon RI requires the recruitment of Src family tyrosine kinases and Syk to control the early receptor-proximal signaling events. The signaling pathways propagated by these tyrosine kinases can be further upregulated by the Tec kinase Bruton's tyrosine kinase and downregulated by the actions of the tyrosine Src homology 2 domain-containing phosphatase 1 (SHP-1) and SHP-2. In this review, we discuss the regulation and role of specific members of this tyrosine kinase network in KIT and Fc epsilon RI-mediated mast cell activation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular regulation of mast cell activation.

              The mast cell is a central player in allergy and asthma. Activation of these cells induces the release of preformed inflammatory mediators localized in specialized granules and the de novo synthesis and secretion of cytokines, chemokines, and eicosanoids. The balance of engaging inhibitory and activatory cell-surface receptors on mast cells determines whether the cell becomes active on encountering a challenge. However, recent evidence suggests that, once activated, a mast cell's response is further regulated by the balance of both positive and negative intracellular molecular events that extend well beyond the traditional role of kinases and phosphatases. These functional responses are also carefully governed by other protein and lipid mediators that determine the rate and extent of the response. Molecules that have adaptor functions, modulate lipids, and provide synergistic signals add to the regulatory complexity. Considerable information has been obtained from the study of the high-affinity receptor for IgE (FcepsilonRI), and thus it is the major focus of this review. The unifying theme is that the regulatory steps mentioned herein are required for promoting effective responses while protecting against unwanted inflammatory responses.
                Bookmark

                Author and article information

                Contributors
                lclee@ybu.edu.cn
                ghyan2015@sina.com
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                19 September 2017
                19 September 2017
                2017
                : 7
                : 11895
                Affiliations
                [1 ]Department of Anatomy and Histology and Embryology, Yanbian University Medical College, Yanji, 133002 P.R. China
                [2 ]ISNI 0000 0004 1758 0638, GRID grid.459480.4, Department of Respiratory Medicine, Yanbian University Hospital, ; Yanji, P.R. China
                [3 ]GRID grid.440752.0, College of Pharmacy, Yanbian University, ; Yanji, 133002 P.R. China
                [4 ]ISNI 0000 0004 0470 4320, GRID grid.411545.0, Department of Anatomy, Medical School, Institute for Medical Sciences, Chonbuk National University, ; Jeonju, Jeonbuk 561-756 Republic of Korea
                Article
                12252
                10.1038/s41598-017-12252-3
                5605538
                28928455
                570b7489-4ea4-4898-a0b8-6ac4f7bc9c85
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 17 February 2017
                : 22 August 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article