36
views
0
recommends
+1 Recommend
2 collections
    0
    shares

          The flagship journal of the Society for Endocrinology. Learn more

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      New methods to investigate the GnRH pulse generator

      review-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The exact neural construct underlying the dynamic secretion of gonadotrophin-releasing hormone (GnRH) has only recently been identified despite the detection of multiunit electrical activity volleys associated with pulsatile luteinising hormone (LH) secretion four decades ago. Since the discovery of kisspeptin/neurokinin B/dynorphin neurons in the mammalian hypothalamus, there has been much research into the role of this neuronal network in controlling the oscillatory secretion of gonadotrophin hormones. In this review, we provide an update of the progressive application of cutting-edge techniques combined with mathematical modelling by the neuroendocrine community, which are transforming the functional investigation of the GnRH pulse generator. Understanding the nature and function of the GnRH pulse generator can greatly inform a wide range of clinical studies investigating infertility treatments.

          Related collections

          Most cited references113

          • Record: found
          • Abstract: found
          • Article: not found

          Neuropeptide transmission in brain circuits.

          Neuropeptides are found in many mammalian CNS neurons where they play key roles in modulating neuronal activity. In contrast to amino acid transmitter release at the synapse, neuropeptide release is not restricted to the synaptic specialization, and after release, a neuropeptide may diffuse some distance to exert its action through a G protein-coupled receptor. Some neuropeptides such as hypocretin/orexin are synthesized only in single regions of the brain, and the neurons releasing these peptides probably have similar functional roles. Other peptides such as neuropeptide Y (NPY) are synthesized throughout the brain, and neurons that synthesize the peptide in one region have no anatomical or functional connection with NPY neurons in other brain regions. Here, I review converging data revealing a complex interaction between slow-acting neuromodulator peptides and fast-acting amino acid transmitters in the control of energy homeostasis, drug addiction, mood and motivation, sleep-wake states, and neuroendocrine regulation. Copyright © 2012 Elsevier Inc. All rights reserved.
            • Record: found
            • Abstract: found
            • Article: not found

            TAC3 and TACR3 mutations in familial hypogonadotropic hypogonadism reveal a key role for Neurokinin B in the central control of reproduction.

            The timely secretion of gonadal sex steroids is essential for the initiation of puberty, the postpubertal maintenance of secondary sexual characteristics and the normal perinatal development of male external genitalia. Normal gonadal steroid production requires the actions of the pituitary-derived gonadotropins, luteinizing hormone and follicle-stimulating hormone. We report four human pedigrees with severe congenital gonadotropin deficiency and pubertal failure in which all affected individuals are homozygous for loss-of-function mutations in TAC3 (encoding Neurokinin B) or its receptor TACR3 (encoding NK3R). Neurokinin B, a member of the substance P-related tachykinin family, is known to be highly expressed in hypothalamic neurons that also express kisspeptin, a recently identified regulator of gonadotropin-releasing hormone secretion. These findings implicate Neurokinin B as a critical central regulator of human gonadal function and suggest new approaches to the pharmacological control of human reproduction and sex hormone-related diseases.
              • Record: found
              • Abstract: found
              • Article: not found

              The GPR54 gene as a regulator of puberty.

              Puberty, a complex biologic process involving sexual development, accelerated linear growth, and adrenal maturation, is initiated when gonadotropin-releasing hormone begins to be secreted by the hypothalamus. We conducted studies in humans and mice to identify the genetic factors that determine the onset of puberty. We used complementary genetic approaches in humans and in mice. A consanguineous family with members who lacked pubertal development (idiopathic hypogonadotropic hypogonadism) was examined for mutations in a candidate gene, GPR54, which encodes a G protein-coupled receptor. Functional differences between wild-type and mutant GPR54 were examined in vitro. In parallel, a Gpr54-deficient mouse model was created and phenotyped. Responsiveness to exogenous gonadotropin-releasing hormone was assessed in both the humans and the mice. Affected patients in the index pedigree were homozygous for an L148S mutation in GPR54, and an unrelated proband with idiopathic hypogonadotropic hypogonadism was determined to have two separate mutations, R331X and X399R. The in vitro transfection of COS-7 cells with mutant constructs demonstrated a significantly decreased accumulation of inositol phosphate. The patient carrying the compound heterozygous mutations (R331X and X399R) had attenuated secretion of endogenous gonadotropin-releasing hormone and a left-shifted dose-response curve for gonadotropin-releasing hormone as compared with six patients who had idiopathic hypogonadotropic hypogonadism without GPR54 mutations. The Gpr54-deficient mice had isolated hypogonadotropic hypogonadism (small testes in male mice and a delay in vaginal opening and an absence of follicular maturation in female mice), but they showed responsiveness to both exogenous gonadotropins and gonadotropin-releasing hormone and had normal levels of gonadotropin-releasing hormone in the hypothalamus. Mutations in GPR54, a G protein-coupled receptor gene, cause autosomal recessive idiopathic hypogonadotropic hypogonadism in humans and mice, suggesting that this receptor is essential for normal gonadotropin-releasing hormone physiology and for puberty. Copyright 2003 Massachusetts Medical Society

                Author and article information

                Journal
                J Mol Endocrinol
                J Mol Endocrinol
                JME
                Journal of Molecular Endocrinology
                Bioscientifica Ltd (Bristol )
                0952-5041
                1479-6813
                11 January 2024
                12 December 2023
                01 February 2024
                : 72
                : 2
                : e230079
                Affiliations
                [1 ]Department of Women and Children’s Health , Faculty of Life Science and Medicine, King’s College London, UK
                [2 ]Division of Endocrinology , Diabetes, and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
                Author notes
                Correspondence should be addressed to Deyana Ivanova: divanova@ 123456bwh.harvard.edu
                Author information
                http://orcid.org/0000-0003-1508-166X
                Article
                JME-23-0079
                10.1530/JME-23-0079
                10831570
                38085702
                570e4435-1d92-4206-ba7e-fe5f66a741c1
                © the author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License.

                History
                : 10 June 2023
                : 12 December 2023
                Categories
                Review

                Endocrinology & Diabetes
                hypothalamus and neuroendocrinology,neurotransmitters,female reproduction,male reproduction

                Comments

                Comment on this article

                Related Documents Log