8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Development and Optimization of Epigallocatechin-3-Gallate (EGCG) Nano Phytosome Using Design of Experiment (DoE) and Their In Vivo Anti-Inflammatory Studies

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Inflammation is responsible for the development of many diseases that make up a significant cause of death. The purpose of the study was to develop a novel nanophytosomal preparation of epigallocatechin-3-gallate (EGCG) and egg phospholipid complex that has a lower particle size with higher drug loading capability, physical stability and anti-inflammatory activities. The impact of different factors and material characteristics on the average particle size was studied along with the drug loading of phytosome using design of experiment (DoE). The in vivo anti-inflammatory study was evaluated using a rat model to investigate the performance of EGCG nanophytosome. UHPLC results showed that 500 µg of EGCG were present in 1 mL of green tea extract. SEM data exhibited that phytosome (phospholipid-drug complex) was in the nanosize range, which was further evident from TEM data. Malvern Zetasizer data showed that the average particle size of the EGCG nanophytosome was in the range of 100–250 nm. High drug loading (up to 90%) was achieved with optimum addition rate, stirring temperature and phospholipid concentration. Stability study data suggest that no significant changes were observed in average particle size and drug loading of nanophytome. The in vivo anti-inflammatory study indicated a significant anti-inflammatory activity of green tea extract, pure EGCG and its phytosomal preparations ( p ≤ 0.001) against acute paw edema.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Inflammation and cancer.

          Recent data have expanded the concept that inflammation is a critical component of tumour progression. Many cancers arise from sites of infection, chronic irritation and inflammation. It is now becoming clear that the tumour microenvironment, which is largely orchestrated by inflammatory cells, is an indispensable participant in the neoplastic process, fostering proliferation, survival and migration. In addition, tumour cells have co-opted some of the signalling molecules of the innate immune system, such as selectins, chemokines and their receptors for invasion, migration and metastasis. These insights are fostering new anti-inflammatory therapeutic approaches to cancer development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Polyphenols: food sources and bioavailability.

            Polyphenols are abundant micronutrients in our diet, and evidence for their role in the prevention of degenerative diseases such as cancer and cardiovascular diseases is emerging. The health effects of polyphenols depend on the amount consumed and on their bioavailability. In this article, the nature and contents of the various polyphenols present in food sources and the influence of agricultural practices and industrial processes are reviewed. Estimates of dietary intakes are given for each class of polyphenols. The bioavailability of polyphenols is also reviewed, with particular focus on intestinal absorption and the influence of chemical structure (eg, glycosylation, esterification, and polymerization), food matrix, and excretion back into the intestinal lumen. Information on the role of microflora in the catabolism of polyphenols and the production of some active metabolites is presented. Mechanisms of intestinal and hepatic conjugation (methylation, glucuronidation, sulfation), plasma transport, and elimination in bile and urine are also described. Pharmacokinetic data for the various polyphenols are compared. Studies on the identification of circulating metabolites, cellular uptake, intracellular metabolism with possible deconjugation, biological properties of the conjugated metabolites, and specific accumulation in some target tissues are discussed. Finally, bioavailability appears to differ greatly between the various polyphenols, and the most abundant polyphenols in our diet are not necessarily those that have the best bioavailability profile. A thorough knowledge of the bioavailability of the hundreds of dietary polyphenols will help us to identify those that are most likely to exert protective health effects.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cancer prevention by tea: animal studies, molecular mechanisms and human relevance.

              Extracts of tea, especially green tea, and tea polyphenols have been shown to inhibit the formation and development of tumours at different organ sites in animal models. There is considerable evidence that tea polyphenols, in particular (-)-epigallocatechin-3-gallate, inhibit enzyme activities and signal transduction pathways, resulting in the suppression of cell proliferation and enhancement of apoptosis, as well as the inhibition of cell invasion,angiogenesis and metastasis. Here, we review these biological activities and existing data relating tea consumption to human cancer risk in an attempt to understand the potential use of tea for cancer prevention.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Molecules
                Molecules
                molecules
                Molecules
                MDPI
                1420-3049
                20 November 2020
                November 2020
                : 25
                : 22
                : 5453
                Affiliations
                [1 ]Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh; mohammad.shariare@ 123456northsouth.edu (M.H.S.); afnan.kazi@ 123456northsouth.edu (K.A.); Iqbal.faria@ 123456northsouth.edu (F.I.)
                [2 ]Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; maltamimi@ 123456ksu.edu.sa (M.A.A.); afars@ 123456ksu.edu.sa (F.K.A.)
                [3 ]Central Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; srahamad@ 123456ksu.edu.sa
                [4 ]Research Center, King Fahad Medical City, P.O. Box. 59046, Riyadh 11525, Saudi Arabia; maldughaim@ 123456kfmc.med.sa
                Author notes
                [* ]Correspondence: mkazi@ 123456ksu.edu.sa ; Tel.: +966-(0)-114677372; Fax: +966-(0)-114676295
                Author information
                https://orcid.org/0000-0001-5176-3647
                https://orcid.org/0000-0002-4519-0069
                https://orcid.org/0000-0002-5611-0378
                Article
                molecules-25-05453
                10.3390/molecules25225453
                7699940
                33233756
                570e9217-2e78-401f-832b-37a92b144aa3
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 04 November 2020
                : 16 November 2020
                Categories
                Article

                nanophytosome,epigallocatechin-3-gallate (egcg),particle size,drug loading,anti-inflammatory

                Comments

                Comment on this article