13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      IL-33 blockade suppresses tumor growth of human lung cancer through direct and indirect pathways in a preclinical model

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Non-small-cell lung cancer (NSCLC) is the most common type in lung cancer, a leading cause of cancer-related death worldwide. Our previous study unraveled a pro-cancer function of IL-33 in fueling outgrowth and metastasis of human NSCLC cells. Herein, we determined that interfere with IL-33 activity was an effective strategy for limiting NSCLC tumor growth using a preclinical model with human NSCLC xenografts. IL-33 blockade efficiently inhibited tumor growth of NSCLC xenografts in immune-deficient mice. Mechanistically, IL-33 blockade suppressed outgrowth capacity of human NSCLC cells. Meanwhile, IL-33 blockade abrogated polarization of M2 tumor-associated macrophages (TAMs) and reduced accumulation of regulatory T cells (Tregs) in tumor microenvironments, shaping functional immune surveillance. In NSCLC patients, IL-33 expressions were positively correlated with Ki-67 proliferation index and expressions of M2 TAM- and Teg-related genes. These findings identify IL-33 as a dual-functional factor in NSCLC pathogenesis and suggest IL-33 blockade as a promising therapeutic for NSCLC patients.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Regulatory T cells in cancer immunotherapy

          FOXP3-expressing regulatory T (Treg) cells, which suppress aberrant immune response against self-antigens, also suppress anti-tumor immune response. Infiltration of a large number of Treg cells into tumor tissues is often associated with poor prognosis. There is accumulating evidence that the removal of Treg cells is able to evoke and enhance anti-tumor immune response. However, systemic depletion of Treg cells may concurrently elicit deleterious autoimmunity. One strategy for evoking effective tumor immunity without autoimmunity is to specifically target terminally differentiated effector Treg cells rather than all FOXP3+ T cells, because effector Treg cells are the predominant cell type in tumor tissues. Various cell surface molecules, including chemokine receptors such as CCR4, that are specifically expressed by effector Treg cells can be the candidates for depleting effector Treg cells by specific cell-depleting monoclonal antibodies. In addition, other immunological characteristics of effector Treg cells, such as their high expression of CTLA-4, active proliferation, and apoptosis-prone tendency, can be exploited to control specifically their functions. For example, anti-CTLA-4 antibody may kill effector Treg cells or attenuate their suppressive activity. It is hoped that combination of Treg-cell targeting (e.g., by reducing Treg cells or attenuating their suppressive activity in tumor tissues) with the activation of tumor-specific effector T cells (e.g., by cancer vaccine or immune checkpoint blockade) will make the current cancer immunotherapy more effective.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Opposite Effects of M1 and M2 Macrophage Subtypes on Lung Cancer Progression

            Macrophages in a tumor microenvironment have been characterized as M1- and M2-polarized subtypes. Here, we discovered the different macrophages’ impacts on lung cancer cell A549. The M2a/M2c subtypes promoted A549 invasion and xenograft tumor growth. The M1 subtype suppressed angiogenesis. M1 enhanced the sensitivity of A549 to cisplatin and decreased the tube formation activity and cell viability of A549 cells by inducing apoptosis and senescence. Different macrophage subtypes regulated genes involved in the immune response, cytoskeletal remodeling, coagulation, cell adhesion, and apoptosis pathways in A549 cells, which was a pattern that correlated with the altered behaviors of the A549 cells. Furthermore, we found that the identified M1/M2 gene signatures were significantly correlated with the extended overall survival of lung cancer patients. These results suggest that M1/M2 gene expression signature may be used as a prognostic indicator for lung cancer patients, and M1/M2 polarization may be a target of investigation of immune-modulating therapies for lung cancer in the future.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Interleukin-33/ST2 axis promotes breast cancer growth and metastases by facilitating intratumoral accumulation of immunosuppressive and innate lymphoid cells.

              The role of IL-33/ST2 pathway in antitumor immunity is unclear. Using 4T1 breast cancer model we demonstrate time-dependent increase of endogenous IL-33 at both the mRNA and protein levels in primary tumors and metastatic lungs during cancer progression. Administration of IL-33 accelerated tumor growth and development of lung and liver metastases, which was associated with increased intratumoral accumulation of CD11b(+) Gr-1(+) TGF-β1(+) myeloid-derived suppressor cells (MDSCs) that expressed IL-13α1R, IL-13-producing Lin(-) Sca-1(+) ST2(+) innate lymphoid cells (ILCs) and CD4(+) Foxp3(+) ST2(+) IL-10(+) Tregs compared to untreated mice. Higher incidence of monocytic vs. granulocytic MDSCs and plasmocytoid vs. conventional dendritic cells (DCs) was present in mammary tumors of IL-33-treated mice. Intratumoral NKp46(+) NKG2D(+) and NKp46(+) FasL(+) cells were markedly reduced after IL-33 treatment, while phosphate-buffered saline-treated ST2-deficient mice had increased frequencies of these tumoricidal natural killer (NK) cells compared to untreated wild-type mice. IL-33 promoted intratumoral cell proliferation and neovascularization, which was attenuated in the absence of ST2. Tumor-bearing mice given IL-33 had increased percentages of splenic MDSCs, Lin(-) Sca-1(+) ILCs, IL-10-expressing CD11c(+) DCs and alternatively activated M2 macrophages and higher circulating levels of IL-10 and IL-13. A significantly reduced NK cell, but not CD8(+) T-cell cytotoxicity in IL-33-treated mice was observed and the mammary tumor progression was not affected when CD8(+) T cells were in vivo depleted. We show a previously unrecognized role for IL-33 in promoting breast cancer progression through increased intratumoral accumulation of immunosuppressive cells and by diminishing innate antitumor immunity. Therefore, IL-33 may be considered as an important mediator in the regulation of breast cancer progression. © 2013 UICC.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                15 September 2017
                2 August 2017
                : 8
                : 40
                : 68571-68582
                Affiliations
                1 Department of Respiratory Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
                2 Department of Clinical Laboratory, Qingdao Women & Children Hospital, Qingdao 266034, China
                3 Department of Respiratory Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
                Author notes
                Correspondence to: Tao Ren, rentaosh@ 123456126.com
                Article
                19786
                10.18632/oncotarget.19786
                5620278
                28978138
                57168a3a-5252-4c37-b117-dd6142eb5bf9
                Copyright: © 2017 Wang et al.

                This article is distributed under the terms of the Creative Commons Attribution License (CC-BY), which permits unrestricted use and redistribution provided that the original author and source are credited.

                History
                : 18 February 2017
                : 18 June 2017
                Categories
                Research Paper

                Oncology & Radiotherapy
                lung cancer,il-33,tumor-associated macrophage,regulatory t cell
                Oncology & Radiotherapy
                lung cancer, il-33, tumor-associated macrophage, regulatory t cell

                Comments

                Comment on this article