37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The anatomy of the posterior communicating artery as a risk factor for ischemic cerebral infarction.

      The New England journal of medicine
      Brain Ischemia, etiology, pathology, Carotid Artery, Internal, Carotid Stenosis, complications, Cerebral Infarction, Circle of Willis, Collateral Circulation, Confidence Intervals, Female, Humans, Magnetic Resonance Imaging, Male, Odds Ratio, Risk Factors, Vascular Patency

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          After the occlusion of an internal carotid artery the principal source of collateral flow is through the arteries of the circle of Willis, but the size and patency of these arteries are quite variable. Study of the anatomy of the collateral pathways in patients with internal-carotid-artery occlusion with or without infarction in the watershed area of the deep white matter may identify patterns that afford protection from ischemic infarction. Using conventional magnetic resonance imaging and three-dimensional phase-contrast magnetic resonance angiography, we evaluated 29 consecutive patients (32 hemispheres at risk) with angiographically proved occlusion of the internal carotid artery. Four collateral pathways to the occluded vessel were evaluated: the proximal segment of the anterior cerebral artery, the posterior communicating artery, the ophthalmic artery, and leptomeningeal collateral vessels from the posterior cerebral artery. Only features of the ipsilateral posterior communicating artery were related to the risk of watershed infarction. The presence of posterior communicating arteries measuring at least 1 mm in diameter was associated with the absence of watershed infarction (13 hemispheres, no infarcts; P < 0.001). Conversely, there were 4 watershed infarcts in the 6 hemispheres with posterior communicating arteries measuring less than 1 mm in diameter and 10 infarcts in the 13 hemispheres with no detectable flow in the ipsilateral posterior communicating artery. A small (< 1 mm in diameter) or absent ipsilateral posterior communicating artery is a risk factor for ischemic cerebral infarction in patients with internal-carotid-artery occlusion.

          Related collections

          Author and article information

          Comments

          Comment on this article