28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genomic Diversity of Escherichia Isolates from Diverse Habitats

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Our understanding of the Escherichia genus is heavily biased toward pathogenic or commensal isolates from human or animal hosts. Recent studies have recovered Escherichia isolates that persist, and even grow, outside these hosts. Although the environmental isolates are typically phylogenetically distinct, they are highly related to and phenotypically indistinguishable from their human counterparts, including for the coliform test. To gain insights into the genomic diversity of Escherichia isolates from diverse habitats, including freshwater, soil, animal, and human sources, we carried out comparative DNA-DNA hybridizations using a multi-genome E. coli DNA microarray. The microarray was validated based on hybridizations with selected strains whose genome sequences were available and used to assess the frequency of microarray false positive and negative signals. Our results showed that human fecal isolates share two sets of genes (n>90) that are rarely found among environmental isolates, including genes presumably important for evading host immune mechanisms (e.g., a multi-drug transporter for acids and antimicrobials) and adhering to epithelial cells (e.g., hemolysin E and fimbrial-like adhesin protein). These results imply that environmental isolates are characterized by decreased ability to colonize host cells relative to human isolates. Our study also provides gene markers that can distinguish human isolates from those of warm-blooded animal and environmental origins, and thus can be used to more reliably assess fecal contamination in natural ecosystems.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Cluster analysis and display of genome-wide expression patterns.

          A system of cluster analysis for genome-wide expression data from DNA microarray hybridization is described that uses standard statistical algorithms to arrange genes according to similarity in pattern of gene expression. The output is displayed graphically, conveying the clustering and the underlying expression data simultaneously in a form intuitive for biologists. We have found in the budding yeast Saccharomyces cerevisiae that clustering gene expression data groups together efficiently genes of known similar function, and we find a similar tendency in human data. Thus patterns seen in genome-wide expression experiments can be interpreted as indications of the status of cellular processes. Also, coexpression of genes of known function with poorly characterized or novel genes may provide a simple means of gaining leads to the functions of many genes for which information is not available currently.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli.

            We present the complete genome sequence of uropathogenic Escherichia coli, strain CFT073. A three-way genome comparison of the CFT073, enterohemorrhagic E. coli EDL933, and laboratory strain MG1655 reveals that, amazingly, only 39.2% of their combined (nonredundant) set of proteins actually are common to all three strains. The pathogen genomes are as different from each other as each pathogen is from the benign strain. The difference in disease potential between O157:H7 and CFT073 is reflected in the absence of genes for type III secretion system or phage- and plasmid-encoded toxins found in some classes of diarrheagenic E. coli. The CFT073 genome is particularly rich in genes that encode potential fimbrial adhesins, autotransporters, iron-sequestration systems, and phase-switch recombinases. Striking differences exist between the large pathogenicity islands of CFT073 and two other well-studied uropathogenic E. coli strains, J96 and 536. Comparisons indicate that extraintestinal pathogenic E. coli arose independently from multiple clonal lineages. The different E. coli pathotypes have maintained a remarkable synteny of common, vertically evolved genes, whereas many islands interrupting this common backbone have been acquired by different horizontal transfer events in each strain.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The bacterial species definition in the genomic era.

              The bacterial species definition, despite its eminent practical significance for identification, diagnosis, quarantine and diversity surveys, remains a very difficult issue to advance. Genomics now offers novel insights into intra-species diversity and the potential for emergence of a more soundly based system. Although we share the excitement, we argue that it is premature for a universal change to the definition because current knowledge is based on too few phylogenetic groups and too few samples of natural populations. Our analysis of five important bacterial groups suggests, however, that more stringent standards for species may be justifiable when a solid understanding of gene content and ecological distinctiveness becomes available. Our analysis also reveals what is actually encompassed in a species according to the current standards, in terms of whole-genome sequence and gene-content diversity, and shows that this does not correspond to coherent clusters for the environmental Burkholderia and Shewanella genera examined. In contrast, the obligatory pathogens, which have a very restricted ecological niche, do exhibit clusters. Therefore, the idea of biologically meaningful clusters of diversity that applies to most eukaryotes may not be universally applicable in the microbial world, or if such clusters exist, they may be found at different levels of distinction.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                8 October 2012
                : 7
                : 10
                : e47005
                Affiliations
                [1 ]School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
                [2 ]Center for Microbial Ecology, Michigan State University, East Lansing, Michigan, United States of America
                [3 ]School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
                [4 ]Center for Bioinformatics and Computational Genomics, Georgia Institute of Technology, Atlanta, Georgia, United States of America
                University of Vienna, Austria
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: KTK JT. Performed the experiments: SB DRY. Analyzed the data: SO. Wrote the paper: SO KTK DRY.

                [¤a]

                Current address: Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America

                [¤b]

                Current address: Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America

                Article
                PONE-D-12-09025
                10.1371/journal.pone.0047005
                3466228
                23056556
                571b0dac-5934-4c15-b7db-e43d4cd4e0d8
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 27 March 2012
                : 10 September 2012
                Page count
                Pages: 9
                Funding
                This work was supported by the NSF (award DEB-0516252, http://www.nsf.gov/, to J.M.T. and K.T.K.) and the U.S. Department of Energy (award DE-FG02-07ER64389, http://energy.gov/, to J.M.T. and K.T.K.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Computational Biology
                Genomics
                Comparative Genomics
                Genome Evolution
                Microarrays
                Evolutionary Biology
                Evolutionary Processes
                Adaptation
                Comparative Genomics
                Genomics
                Comparative Genomics
                Microbiology
                Bacterial Pathogens
                Escherichia Coli
                Model Organisms
                Prokaryotic Models
                Escherichia Coli

                Uncategorized
                Uncategorized

                Comments

                Comment on this article