18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      NaCl stress-induced transcriptomics analysis of Salix linearistipularis (syn. Salix mongolica)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Salix linearistipularis (syn. S. mongolica) is a woody halophyte, which is distributed naturally in saline-alkali soil of Songnen plain, Heilongjiang, China. It plays an important role in maintaining ecological balance and in improving saline soil. Furthermore, S. linearistipularis is also a genetic resource; however, there is no available information of genomic background for salt tolerance mechanism. We conducted the transcriptome analysis of S. linearistipularis to understand the mechanisms of salt tolerance by using RNA-seq technology.

          Results

          The transcription profiles of both the salt stress (SLH-treated) and the control (SLH-control) sample for S. linearistipularis were obtained by using RNA-seq in this study. By comparative analysis, only 3034 of 53,362 all-unigenes between two samples were expressed differently at more than 1.5-fold ( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left| {fold - change} \right| \ge 1.5$$\end{document} , FDR ≤ 0.05), including 1397 up-regulated genes and 1637 down-regulated genes. In total, 2199 genes were classified into 50 Gene Ontology (GO) terms and 1103 genes were involved in 116 biological pathways. To find salt stress related genes, all-unigenes of S. linearistipularis were classified into three categories according to their degree of the differentially expressed genes (DEGs) at 0–1.5-fold (non differently expressed genes, N-DEGs), at 1.5–4.0-fold and more than 4.0-fold. The pathways of three categorized genes were compared with the DEGs of Arabidopsis thaliana, showing that 22, 10 and 1 pathway of S. linearistipularis were overlapped with A. thaliana. Degree of the overlapping was categorized as 0–1.5-fold, 1.5–4.0-fold and more than 4.0-folds.

          Conclusion

          Our study revealed that the N-DEGs of 22 pathways in S. linearistipularis were overlapped with the DEGs of A. thaliana. This result suggests that those overlapped genes that contrasted with the up- or down-regulated genes in A. thaliana were possibility evolved into housekeeping genes in S. linearistipularis under salt stress.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s40709-016-0038-7) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Salinity tolerance in halophytes.

          Halophytes, plants that survive to reproduce in environments where the salt concentration is around 200 mm NaCl or more, constitute about 1% of the world's flora. Some halophytes show optimal growth in saline conditions; others grow optimally in the absence of salt. However, the tolerance of all halophytes to salinity relies on controlled uptake and compartmentalization of Na+, K+ and Cl- and the synthesis of organic 'compatible' solutes, even where salt glands are operative. Although there is evidence that different species may utilize different transporters in their accumulation of Na+, in general little is known of the proteins and regulatory networks involved. Consequently, it is not yet possible to assign molecular mechanisms to apparent differences in rates of Na+ and Cl- uptake, in root-to-shoot transport (xylem loading and retrieval), or in net selectivity for K+ over Na+. At the cellular level, H+-ATPases in the plasma membrane and tonoplast, as well as the tonoplast H+-PPiase, provide the trans-membrane proton motive force used by various secondary transporters. The widespread occurrence, taxonomically, of halophytes and the general paucity of information on the molecular regulation of tolerance mechanisms persuade us that research should be concentrated on a number of 'model' species that are representative of the various mechanisms that might be involved in tolerance.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Na+ tolerance and Na+ transport in higher plants.

            M. Tester (2003)
            Tolerance to high soil [Na(+)] involves processes in many different parts of the plant, and is manifested in a wide range of specializations at disparate levels of organization, such as gross morphology, membrane transport, biochemistry and gene transcription. Multiple adaptations to high [Na(+)] operate concurrently within a particular plant, and mechanisms of tolerance show large taxonomic variation. These mechanisms can occur in all cells within the plant, or can occur in specific cell types, reflecting adaptations at two major levels of organization: those that confer tolerance to individual cells, and those that contribute to tolerance not of cells per se, but of the whole plant. Salt-tolerant cells can contribute to salt tolerance of plants; but we suggest that equally important in a wide range of conditions are processes involving the management of Na(+) movements within the plant. These require specific cell types in specific locations within the plant catalysing transport in a coordinated manner. For further understanding of whole plant tolerance, we require more knowledge of cell-specific transport processes and the consequences of manipulation of transporters and signalling elements in specific cell types.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray.

              Full-length cDNAs are essential for functional analysis of plant genes in the post-sequencing era of the Arabidopsis genome. Recently, cDNA microarray analysis has been developed for quantitative analysis of global and simultaneous analysis of expression profiles. We have prepared a full-length cDNA microarray containing approximately 7000 independent, full-length cDNA groups to analyse the expression profiles of genes under drought, cold (low temperature) and high-salinity stress conditions over time. The transcripts of 53, 277 and 194 genes increased after cold, drought and high-salinity treatments, respectively, more than fivefold compared with the control genes. We also identified many highly drought-, cold- or high-salinity- stress-inducible genes. However, we observed strong relationships in the expression of these stress-responsive genes based on Venn diagram analysis, and found 22 stress-inducible genes that responded to all three stresses. Several gene groups showing different expression profiles were identified by analysis of their expression patterns during stress-responsive gene induction. The cold-inducible genes were classified into at least two gene groups from their expression profiles. DREB1A was included in a group whose expression peaked at 2 h after cold treatment. Among the drought, cold or high-salinity stress-inducible genes identified, we found 40 transcription factor genes (corresponding to approximately 11% of all stress-inducible genes identified), suggesting that various transcriptional regulatory mechanisms function in the drought, cold or high-salinity stress signal transduction pathways.
                Bookmark

                Author and article information

                Contributors
                nanguixian@ybu.edu.cn
                tyozhang@ems.hrbmu.edu.cn
                slhmu1245@126.com
                ilee@nankai.edu.cn
                takano@anesc.u-tokyo.ac.jp
                shenkuiliu@nefu.edu.cn
                Journal
                J Biol Res (Thessalon)
                J Biol Res (Thessalon)
                Journal of Biological Research
                BioMed Central (London )
                1790-045X
                2241-5793
                29 February 2016
                29 February 2016
                December 2016
                : 23
                : 1
                Affiliations
                [ ]Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Hexing Road No. 26, Xiangfang, Harbin, 150040 Heilongjiang China
                [ ]College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081 China
                [ ]Institute of Physics, Nankai University, Nankai District, Tianjin, 300071 China
                [ ]Asian Natural Environment Science Center (ANESC), The University of Tokyo, Midori Cho 1-1-1, Nishitokyo, Tokyo 188-0002 Japan
                [ ]College of Agriculture, Yanbian University, Yanji, 133002 China
                Article
                38
                10.1186/s40709-016-0038-7
                4772304
                26933650
                571ca8b8-5a01-4e01-be86-f841545d6462
                © Nan et al. 2016

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 12 January 2016
                : 29 January 2016
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100002855, Ministry of Science and Technology of the People's Republic of China;
                Award ID: 2013AA102701-7
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/501100005240, Changjiang Scholar Program of Chinese Ministry of Education;
                Award ID: IRT13053
                Award Recipient :
                Categories
                Research
                Custom metadata
                © The Author(s) 2016

                salix linearistipularis,rna-seq,biological pathway,salt stress,differently expressed genes (degs),non differently expressed genes (n-degs)

                Comments

                Comment on this article