28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Single Atoms and Clusters Based Nanomaterials for Hydrogen Evolution, Oxygen Evolution Reactions, and Full Water Splitting

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references321

          • Record: found
          • Abstract: found
          • Article: not found

          Single-atom catalysis of CO oxidation using Pt1/FeOx.

          Platinum-based heterogeneous catalysts are critical to many important commercial chemical processes, but their efficiency is extremely low on a per metal atom basis, because only the surface active-site atoms are used. Catalysts with single-atom dispersions are thus highly desirable to maximize atom efficiency, but making them is challenging. Here we report the synthesis of a single-atom catalyst that consists of only isolated single Pt atoms anchored to the surfaces of iron oxide nanocrystallites. This single-atom catalyst has extremely high atom efficiency and shows excellent stability and high activity for both CO oxidation and preferential oxidation of CO in H2. Density functional theory calculations show that the high catalytic activity correlates with the partially vacant 5d orbitals of the positively charged, high-valent Pt atoms, which help to reduce both the CO adsorption energy and the activation barriers for CO oxidation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions.

            A fundamental change has been achieved in understanding surface electrochemistry due to the profound knowledge of the nature of electrocatalytic processes accumulated over the past several decades and to the recent technological advances in spectroscopy and high resolution imaging. Nowadays one can preferably design electrocatalysts based on the deep theoretical knowledge of electronic structures, via computer-guided engineering of the surface and (electro)chemical properties of materials, followed by the synthesis of practical materials with high performance for specific reactions. This review provides insights into both theoretical and experimental electrochemistry toward a better understanding of a series of key clean energy conversion reactions including oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). The emphasis of this review is on the origin of the electrocatalytic activity of nanostructured catalysts toward the aforementioned reactions by correlating the apparent electrode performance with their intrinsic electrochemical properties. Also, a rational design of electrocatalysts is proposed starting from the most fundamental aspects of the electronic structure engineering to a more practical level of nanotechnological fabrication.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Noble metal-free hydrogen evolution catalysts for water splitting.

              Sustainable hydrogen production is an essential prerequisite of a future hydrogen economy. Water electrolysis driven by renewable resource-derived electricity and direct solar-to-hydrogen conversion based on photochemical and photoelectrochemical water splitting are promising pathways for sustainable hydrogen production. All these techniques require, among many things, highly active noble metal-free hydrogen evolution catalysts to make the water splitting process more energy-efficient and economical. In this review, we highlight the recent research efforts toward the synthesis of noble metal-free electrocatalysts, especially at the nanoscale, and their catalytic properties for the hydrogen evolution reaction (HER). We review several important kinds of heterogeneous non-precious metal electrocatalysts, including metal sulfides, metal selenides, metal carbides, metal nitrides, metal phosphides, and heteroatom-doped nanocarbons. In the discussion, emphasis is given to the synthetic methods of these HER electrocatalysts, the strategies of performance improvement, and the structure/composition-catalytic activity relationship. We also summarize some important examples showing that non-Pt HER electrocatalysts could serve as efficient cocatalysts for promoting direct solar-to-hydrogen conversion in both photochemical and photoelectrochemical water splitting systems, when combined with suitable semiconductor photocatalysts.
                Bookmark

                Author and article information

                Contributors
                Journal
                Advanced Energy Materials
                Adv. Energy Mater.
                Wiley
                1614-6832
                1614-6840
                June 12 2019
                June 2019
                May 02 2019
                June 2019
                : 9
                : 22
                : 1900624
                Affiliations
                [1 ]Center for Superfunctional MaterialsDepartment of ChemistryUlsan National Institute of Science and Technology (UNIST) 50 UNIST‐gil Ulsan 44919 South Korea
                Article
                10.1002/aenm.201900624
                572472ce-e8db-4d73-a8e1-ea359e7111a1
                © 2019

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article